
Performance and Tuning Guide:
Volume 3 - Tools for Monitoring and

Analyzing Performance

Adaptive Server Enterprise

 12.5

DOCUMENT ID: 33619-01-1250-02

LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 1/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book ... xi

CHAPTER 33 Using Statistics to Improve Performance................................. 743
Importance of statistics .. 743

Updating .. 744
Adding statistics for unindexed columns 744

update statistics commands... 745
Column statistics and statistics maintenance............................... 746
Creating and updating column statistics....................................... 747

When additional statistics may be useful 748
Adding statistics for a column with update statistics 748
Adding statistics for minor columns with update index statistics ..

749
Adding statistics for all columns with update all statistics 749

Choosing step numbers for histograms.. 749
Disadvantages of too many steps ... 749
Choosing a step number ... 750

Scan types, sort requirements, and locking 750
Sorts for unindexed or non leading columns 751
Locking, scans, and sorts during update index statistics 751
Locking, scans and sorts during update all statistics 752
Using the with consumers clause.. 752
Reducing update statistics impact on concurrent processes 752

Using the delete statistics command.. 753
When row counts may be inaccurate ... 753

CHAPTER 34 Using the set statistics Commands .. 755
Command syntax ... 755
Using simulated statistics ... 756
Checking subquery cache performance....................................... 756
Checking compile and execute time... 756

Converting ticks to milliseconds .. 757
Reporting physical and logical I/O statistics................................. 757

Contents

iv

Total actual I/O cost value... 758
Statistics for writes .. 759
Statistics for reads... 759
statistics io output for cursors.. 760
Scan count .. 761
Relationship between physical and logical reads.................. 763
statistics io and merge joins .. 766

CHAPTER 35 Using set showplan ... 767
Using ... 767
Basic showplan messages... 768

Query plan delimiter message... 768
Step message ... 768
Query type message ... 769
FROM TABLE message.. 769
TO TABLE message ... 772
Update mode messages ... 773
Optimized using messages ... 776

showplan messages for query clauses .. 776
GROUP BY message.. 777
Selecting into a worktable ... 778
Grouped aggregate message.. 779
compute by message .. 780
Ungrouped aggregate message.. 781
messages for order by and distinct 784
Sorting messages.. 786

Messages describing access methods, caching, and I/O cost..... 787
Auxiliary scan descriptors message 788
Nested iteration message.. 789
Merge join messages .. 790
Table scan message ... 793
Clustered index message.. 793
Index name message .. 794
Scan direction messages .. 795
Positioning messages ... 796
Scanning messages .. 798
Index covering message ... 798
Keys message... 800
Matching index scans message .. 800
Dynamic index message (OR strategy)................................. 801
Reformatting Message .. 803
Trigger Log Scan Message ... 805
I/O Size Messages .. 806
Cache strategy messages... 807

Contents

v

Total estimated I/O cost message... 807
showplan messages for parallel queries 808

Executed in parallel messages.. 809
showplan messages for subqueries... 813

Output for flattened or materialized subqueries 814
Structure of subquery showplan output................................. 820
Subquery execution message ... 820
Nesting level delimiter message.. 821
Subquery plan start delimiter... 821
Subquery plan end delimiter.. 821
Type of subquery... 821
Subquery predicates ... 821
Internal subquery aggregates.. 822
Existence join message... 826

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag........ 829
System tables that store statistics.. 829

systabstats table.. 830
sysstatistics table .. 831

Viewing statistics with the optdiag utility 831
optdiag syntax ... 831
optdiag header information.. 832
Table statistics... 833
Index statistics... 836
Column statistics ... 840
Histogram displays .. 845

Changing statistics with optdiag... 851
Using the optdiag binary mode.. 852
Updating selectivities with optdiag input mode...................... 853
Editing histograms... 854

Using simulated statistics... 856
optdiag syntax for simulated statistics................................... 857
Simulated statistics output... 857
Requirements for loading and using simulated statistics 859
Dropping simulated statistics... 861
Running queries with simulated statistics.............................. 861

Character data containing quotation marks 862
Effects of SQL commands on statistics.. 862

How query processing affects systabstats 865

CHAPTER 37 Tuning with dbcc traceon .. 867
Tuning with dbcc traceon(302) ... 867

dbcc traceon(310) ... 868

Contents

vi

Invoking the dbcc trace facility .. 868
General tips for tuning with dbcc traceon(302)...................... 869
Checking for join columns and search arguments 869
Determining how the optimizer estimates I/O costs 870
Structure of dbcc traceon(302) output................................... 870

Table information block .. 871
Identifying the table ... 872
Basic table data... 872
Cluster ratio ... 872
Partition information .. 872

Base cost block .. 873
Concurrency optimization message 873

Clause block... 873
Search clause identification... 874
Join clause identification ... 875
Sort avert messages ... 875

Column block ... 876
Selectivities when statistics exist and values are known....... 877
When the optimizer uses default values................................ 877
Out-of-range messages... 878
“Disjoint qualifications” message... 879
Forcing messages ... 880
Unique index messages .. 880
Other messages in the column block 880

Index selection block.. 881
Scan and filter selectivity values ... 881
Other information in the index selection block....................... 883

Best access block .. 883
dbcc traceon(310) and final query plan costs 885

Flattened subquery join order message 886
Worker process information .. 886
Final plan information .. 886

CHAPTER 38 Monitoring Performance with sp_sysmon 893
Using .. 894

When to run... 894
Invoking.. 895

Fixed time intervals ... 896
Using begin_sample and end_sample 896
Specifying report sections for output 897
Specifying the application detail parameter........................... 897
Redirecting output to a file... 898

How to use the reports ... 898
Reading output .. 899

Contents

vii

Interpreting the data .. 900
Sample interval and time reporting .. 901
Kernel utilization... 902

Sample output ... 902
Engine busy utilization... 903
CPU yields by engine .. 905
Network checks ... 905
Disk I/O checks ... 907
Total disk I/O checks ... 907

Worker process management .. 908
Sample output ... 908
Worker process requests .. 909
Worker process usage .. 910
Memory requests for worker processes 910
Avg mem ever used by a WP.. 910

Parallel query management ... 911
Sample output ... 911
Parallel query usage.. 912
Merge lock requests .. 913
Sort buffer waits .. 913

Task management ... 914
Sample output ... 914
Connections opened ... 915
Task context switches by engine... 915
Task context switches due to .. 915

Application management.. 923
Requesting detailed application information.......................... 923
Sample output ... 924
Application statistics summary (all applications) 925
Per application or per application and login 928

ESP management .. 929
Sample output ... 930

Housekeeper task activity .. 930
Sample output ... 930
Buffer cache washes ... 931
Garbage collections... 931
Statistics updates .. 931

Monitor access to executing SQL .. 931
Sample output ... 932

Transaction profile.. 933
Sample output ... 933
Transaction summary.. 934
Transaction detail .. 936
Inserts.. 936

Contents

viii

Updates and update detail sections 938
Deletes .. 939

Transaction management .. 940
Sample output ... 940
ULC flushes to transaction log .. 941
Total ULC flushes.. 943
ULC log records .. 943
Maximum ULC size ... 943
ULC semaphore requests ... 944
Log semaphore requests... 944
Transaction log writes ... 945
Transaction log allocations.. 945
Avg # writes per log page.. 946

Index management .. 946
Sample output ... 946
Nonclustered maintenance.. 947
Page splits... 949
Page shrinks.. 955
Index scans ... 955

Metadata cache management.. 955
Sample output ... 956
Open object, index, and database usage.............................. 956
Object and index spinlock contention.................................... 957
Hash spinlock contention .. 958

Lock management.. 958
Sample output ... 958
Lock summary ... 961
Lock detail ... 962
Deadlocks by lock type.. 963
Deadlock detection.. 965
Lock promotions .. 966
Lock time-out information .. 967

Data cache management ... 967
Sample output ... 968
Cache statistics summary (all caches) 970
Cache management by cache... 975

Procedure cache management .. 982
Sample output ... 982
Procedure requests ... 983
Procedure reads from disk .. 983
Procedure writes to disk .. 983
Procedure removals .. 983

Memory management .. 984
Sample output ... 984

Contents

ix

Pages allocated... 984
Pages released ... 984

Recovery management .. 984
Sample output ... 985
Checkpoints... 985
Average time per normal checkpoint..................................... 986
Average time per free checkpoint.. 986
Increasing the housekeeper batch limit................................. 987

Disk I/O management .. 988
Sample output ... 988
Maximum outstanding I/Os.. 989
I/Os delayed by ... 989
Requested and completed disk I/Os 990
Device activity detail .. 991

Network I/O management .. 993
Sample output ... 993
Total network I/Os requests .. 995
Network I/Os delayed .. 996
Total TDS packets received .. 996
Total bytes received .. 996
Average bytes received per packet 996
Total TDS packets sent ... 996
Total bytes sent ... 996
Average bytes sent per packet.. 997
Reducing packet overhead.. 997

Index ... 999

x

xi

About This Book

Audience This manual is intened for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on a test
machine.

How to use this book This manual would normally be used to fine tune, troubleshoot or improve
the performance on Adaptive Server. The Performance and Tuning Guide
is divided into three books:

• Volume 1 - Basics

• Volume 2 - Optimizing and Abstract Plans

• Volume 3 - Tools for Monitoring and Analyzing Performance

The following information is covered:

Volume 1- Basics

Chapter 1, “Overview” describes the major components to be analyzed
when addressing performance.

Chapter 2, “Networks and Performance” provides a brief description of
relational databases and good database design.

Chapter 3, “Using Engines and CPUs”describes Adaptive Server page
types, how data is stored on pages and how queries on heap tables are
executed.

Chapter 4, “Distributing Engine Resources” provides information on how
indexes are used to resolve queries.

Chapter 5, “Controlling Physical Data Placement” explains the process
for query optimization, how statistics are applied to search arguments and
joins for queries.

Chapter 6, “Database Design” describes how Adaptive Server accesses
tables in queries that only involve a single table, and how the costs are
estimated for various access methods

xii

Chapter 7, “Data Storage” describes how Adaptive Server accesses tables
during joins and subqueries and how the costs are determined

Chapter 8, “Indexing for Performance” describes performance issues with
cursors.

Chapter 9, “How Indexes Work” provides guidelines and examples for
choosing indexes.

Chapter 10, “Locking Configuration and Tuning” provides an in-depth look at
the optimization of parallel queries

Chapter 11, “Using Locking Commands” introduces the concepts and
resources required for parallel query processing

Chapter 12, “Reporting on Locks” describes the use of parallel sorting for
queries and for creating indexes.

Chapter 13, “Setting Space Management Properties” presents an overview of
query tuning tools and describes how these tools can interact

Chapter 14, “Memory Use and Performance” describes different methods for
determining the current size of database objects and for estimating their future
size.

Chapter 15, “Determining Sizes of Tables and Indexes,” describes different
methods for determining the current size of database objects and for estimating
their future size.

Chapter 16, “Maintenance Activities and Performance” explains the
commands that provide information about query execution.

Volume 2 - Optimizing and Abstract Plans

Chapter 17, “Adaptive Server Optimizer” explains the process of query
optimization, how statistics are applied to search arguments and joins for
queries.

Chapter 18, “Advanced Optimizing Tools” describes advanced tools for tuning
query performance

Chapter 19, “Query Tuning Tools” presents an overview of query tuning tools
and describes how these tools can interact.

Chapter 20, “Access Methods and Query Costing for Single Tables” describes
how Adaptive Server accesses tables in queries that only involve one table and
how the costs are estimated for various access methods.

 About This Book

xiii

Chapter 21, “Accessing Methods and Costing for Joins and Subqueries”
describes how Adaptive Server accesses tables during joins and subqueries,
and how the costs are determined.

Chapter 22, “Parallel Query Processing” intoduces the concepts and resources
required for parallel query processing.

Chapter 23, “Parallel Query Optimization” provides an indepth look at the
optimization of parallel queries.

Chapter 24, “Parallel Sorting” describes the use of parallel sorting for queries
and creating indexes.

Chapter 25, “Tuning Asynchronous Prefetch” describes how asynchronous
prefetch improves performance for queries that perform large disk I/O.

Chapter 26, “tempdb Performance Issues” stresses the importance of the
temporary database , tempdb, and provides suggestions for improving its
performance.

Chapter 27, “Cursors and Performance” describes performance issues with
cursors.

Chapter 28, “Introduction to Abstract Plans” provides an overview of abstravt
plans and how they can be used to solve query optimization problems.

Chapter 29, “Abstract Query Plan Guide” provides an introduction to writing
abstract plans for specific types of queries and to using abstract plans to detect
changes in query optimization due to configuration or system changes.

Chapter 30, “Creating and Using Abstract Plans” describes the commands that
can be used to save and use abstract plans.

Chapter 31, “Managing Abstract Plans with System Procedures” describes the
system procedures that manage abstract plans and abstract plan groups.

Chapter 32, “Abstract Plan Language Reference” describes the abstract plan
language.

Volume 3 - Tools for Monitoring and Analyzing Performance

Chapter 33, “Using Statistics to Improve Performance” describes how to use
the update statistics command to create and update statistics.

Chapter 34, “Using the set statistics Commands” explains the commands that
provide information about execution.

Chapter 35, “Using set showplan” provides examples of showplan messages.

xiv

Chapter 36, “Statistics Tables and Displaying Statistics with optdiag”
describes the tables that store statistics and the output of the optdiag command
that displays the statistics used by the query optimizer.

Chapter 37, “Tuning with dbcc traceon” explains how to use the dbcc traceon
commands to analyze query optimization problems.

Chapter 38, “Monitoring Performance with sp_sysmon” describes how to use
a system procedure that monitors Adaptive Server performance.

Index The full index for all three volumes is in the back of Volume 3- Tools for
Monitoring and Analyzing Performance.

Related documents The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

 About This Book

xv

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

xvi

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and is included with your
software. The DynaText browser (downloadable from Product Manuals at
http://www.sybase.com/detail/1,3693,1010661,00.html) allows you to access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• Technical Library Product Manuals Web site is an HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

 About This Book

xvii

3 Select a product name from the product list.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

Conventions This section describes conventions used in this manual.

Formatting SQL
statements

SQL is a free-form language. There are no rules about the number of words

you can put on a line or where you must break a line. However, for readability,

all examples and syntax statements in this manual are formatted so that each

clause of a statement begins on a new line. Clauses that have more than one

part extend to additional lines, which are indented.

Font and syntax
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path
names are in italics.

master database

xviii

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevice [device_name]

or, for a command with more options:

Variables, or words that stand for values that you
fill in, are in italics.

select

column_name

from

table_name

where

search_conditions

Parentheses are to be typed as part of the command. compute

row_aggregate

 (

column_name

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovies]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

The comma means you may choose as many of the
options shown as you like, separating your choices
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_cream]

An ellipsis (...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit]
 [, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to buy
additional things: as many of them as you like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

Element Example

 About This Book

xix

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Examples Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

xx

The pubtune database is not provided with Adaptive Server. Since most of the
examples show the results of commands such as set showplan and set statistics
io, running the queries in this manual on pubs2 tables will not produce the same
I/O results, and in many cases, will not produce the same query plans as those
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

743

C H A P T E R 3 3 Using Statistics to Improve
Performance

Accurate statistics are essential to the query optimization. In some cases,
adding statistics for columns that are not leading index keys also improves
query performance. This chapter explains how and when to use the
commands that manage statistics.

Importance of statistics
Adaptive Server’s cost-based optimizer uses statistics about the tables,
indexes, and columns named in a query to estimate query costs. It chooses
the access method that the optimizer determines has the least cost. But this
cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rows in a table, are updated
during query processing. Other statistics, such as the histograms on
columns, are only updated when you run the update statistics command or
when indexes are created.

If you are having problems with a query performing slowly, and seek help
from Technical Support or a Sybase news group on the Internet, one of the
first questions you are likely be asked is “Did you run update statistics?”
You can use the optdiag command to see the time update statistics was last
run for each column on which statistics exist:

Last update of column statistics: Aug 31 2001

Topic Page
Importance of statistics 743

update statistics commands 745

Column statistics and statistics maintenance 746

Creating and updating column statistics 747

Choosing step numbers for histograms 749

Scan types, sort requirements, and locking 750

When row counts may be inaccurate 753

Importance of statistics

744

4:14:17:180PM

Another command you may need for statistics maintenance is delete statistics.
Dropping an index does not drop the statistics for that index. If the distribution
of keys in the columns changes after the index is dropped, but the statistics are
still used for some queries, the outdated statistics can affect query plans.

Updating
The update statistics commands update the column-related statistics such as
histograms and densities. So statistics need to be updated on those columns
where the distribution of keys in the index changes in ways that affect the use
of indexes for your queries.

Running the update statistics commands requires system resources. Like other
maintenance tasks, it should be scheduled at times when load on the server is
light. In particular, update statistics requires table scans or leaf-level scans of
indexes, may increase I/O contention, may use the CPU to perform sorts, and
uses the data and procedure caches. Use of these resources can adversely affect
queries running on the server if you run update statistics at times when usage is
high. In addition, some update statistics commands require shared locks, which
can block updates. See “Scan types, sort requirements, and locking” on page
750 for more information.

Adding statistics for unindexed columns
When you create an index, a histogram is generated for the leading column in
the index. Examples in earlier chapters have shown how statistics for other
columns can increase the accuracy of optimizer statistics. For example, see
“Using statistics on multiple search arguments” on page 396.

You should consider adding statistics for virtually all columns that are
frequently used as search arguments, as long as your maintenance schedule
allows time to keep these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can
greatly improve cost estimates when those columns are used in search
arguments or joins along with the leading index key.

CHAPTER 33 Using Statistics to Improve Performance

745

update statistics commands
The update statistics commands create statistics, if there are no statistics for a
particular column, or replaces existing statistics if they already exist. The
statistics are stored in the system tables systabstats and sysstatistics. The syntax
is:

update statistics table_name
 [[index_name] | [(column_list)]]
 [using step values]
 [with consumers = consumers]

update index statistics table_name [index_name]
 [using step values]
 [with consumers = consumers]

update all statistics table_name

The effects of the commands and their parameters are:

• For update statistics:

• table_name – Generates statistics for the leading column in each
index on the table.

• table_name index_name – Generates statistics for all columns of the
index.

• table_name (column_name) – Generates statistics for only this
column.

• table_name (column_name, column_name...) – Generates a
histogram for the leading column in the set, and multi column density
values for the prefix subsets.

• For update index statistics:

• table_name – Generates statistics for all columns in all indexes on the
table.

• table_name index_name – Generates statistics for all columns in this
index.

• For update all statistics:

• table_name – Generates statistics for all columns of a table.

Column statistics and statistics maintenance

746

Column statistics and statistics maintenance
Histograms are kept on a per-column basis, rather than on a per-index basis.
This has certain implications for managing statistics:

• If a column appears in more than one index, update statistics, update index
statistics or create index updates the histogram for the column and the
density statistics for all prefix subsets.

update all statistics updates histograms for all columns in a table.

• Dropping an index does not drop the statistics for the index, since the
optimizer can use column-level statistics to estimate costs, even when no
index exists.

If you want to remove the statistics after dropping an index, you must
explicitly delete them with delete statistics.

If the statistics are useful to the optimizer and you want to keep the
statistics without having an index, you need to use update statistics,
specifying the column name, for indexes where the distribution of key
values changes over time.

• Truncating a table does not delete the column-level statistics in
sysstatistics. In many cases, tables are truncated and the same data is
reloaded.

Since truncate table does not delete the column-level statistics, there is no
need to run update statistics after the table is reloaded, if the data is the
same.

If you reload the table with data that has a different distribution of key
values, you need to run update statistics.

• You can drop and re-create indexes without affecting the index statistics,
by specifying 0 for the number of steps in the with statistics clause to create
index. This create index command does not affect the statistics in
sysstatistics:

create index title_id_ix on titles(title_id)
 with statistics using 0 values

This allows you to re-create an index without overwriting statistics that
have been edited with optdiag.

• If two users attempt to create an index on the same table, with the same
columns, at the same time, one of the commands may fail due to an attempt
to enter a duplicate key value in sysstatistics.

CHAPTER 33 Using Statistics to Improve Performance

747

Creating and updating column statistics
Creating statistics on unindexed columns can improve the performance of
many queries. The optimizer can use statistics on any column in a where or
having clause to help estimate the number of rows from a table that match the
complete set of query clauses on that table.

Adding statistics for the minor columns of indexes and for unindexed columns
that are frequently used in search arguments can greatly improve the
optimizer’s estimates.

Maintaining a large number of indexes during data modification can be
expensive. Every index for a table must be updated for each insert and delete
to the table, and updates can affect one or more indexes.

Generating statistics for a column without creating an index gives the optimizer
more information to use for estimating the number of pages to be read by a
query, without entailing the processing expense of index updates during data
modification.

The optimizer can apply statistics for any columns used in a search argument
of a where or having clause and for any column named in a join clause. You
need to determine whether the expense of creating and maintaining the
statistics on these columns is worth the improvement in query optimization.

The following commands create and maintain statistics:

• update statistics, when used with the name of a column, generates statistics
for that column without creating an index on it.

The optimizer can use these column statistics to more precisely estimate
the cost of queries that reference the column.

• update index statistics, when used with an index name, creates or updates
statistics for all columns in an index.

If used with a table name, it updates statistics for all indexed columns.

• update all statistics creates or updates statistics for all columns in a table.

Good candidates for column statistics are:

• Columns frequently used as search arguments in where and having clauses

• Columns included in a composite index, and which are not the leading
columns in the index, but which can help estimate the number of data rows
that need to be returned by a query.

Creating and updating column statistics

748

See “How scan and filter selectivity can differ” on page 881 for
information on how additional column statistics can be used in query
optimization.

When additional statistics may be useful
To determine when additional statistics are useful, run queries using dbcc
traceon(302) and statistics io. If there are significant discrepancies between the
“rows to be returned” and I/O estimates displayed by dbcc traceon(302) and the
actual I/O displayed by statistics io, examine these queries for places where
additional statistics can improve the estimates. Look especially for the use of
default density values for search arguments and join columns.

See “Tuning with dbcc traceon(302)” on page 867 for more information.

Adding statistics for a column with update statistics
This command adds statistics for the price column in the titles table:

update statistics titles (price)

This command specifies the number of histogram steps for a column:

update statistics titles (price)
 using 50 values

This command adds a histogram for the titles.pub_id column and generates
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id,
pubdate, title_id:

update statistics titles(pub_id, pubdate, title_id)

Note Running update statistics with a table name updates histograms and
densities for leading columns for indexes only.

It does not update the statistics for unindexed columns.

To maintain these statistics, you must run update statistics and specify the
column name, or run update all statistics.

CHAPTER 33 Using Statistics to Improve Performance

749

Adding statistics for minor columns with update index statistics
To create or update statistics on all columns in an index, use update index
statistics. The syntax is:

update index statistics table_name [index_name]
[using step values]
[with consumers = consumers]

Adding statistics for all columns with update all statistics
To create or update statistics on all columns in a table, use update all statistics.
The syntax is:

update all statistics table_name

Choosing step numbers for histograms
By default, each histogram has 20 steps which provides good performance and
modeling for columns that have an even distribution of values. A higher
number of steps can increase the accuracy of I/O estimates for:

• Columns with a large number of highly duplicated values

• Columns with unequal or skewed distribution of values

• Columns that are queried using leading wild cards in like queries

Note If your database was updated from a pre-11.9 version of the server,
the number of steps defaults to the number of steps that were used on the
distribution page.

Disadvantages of too many steps
Increasing the number of steps beyond what is needed for good query
optimization can hurt Adaptive Server performance, largely due to the amount
of space that is required to store and use the statistics. Increasing the number
of steps:

• Increases the disk storage space required for sysstatistics

Scan types, sort requirements, and locking

750

• Increases the cache space needed to read statistics during query
optimization

• Requires more I/O, if the number of steps is very large

During query optimization, histograms use space borrowed from the procedure
cache. This space is released as soon as the query is optimized.

Choosing a step number
See “Choosing the number of steps for highly duplicated values” on page 850
for more information.

For example, if your table has 5000 rows, and one value in the column that has
only one matching row, you may need to request 5000 steps to get a histogram
that includes a frequency cell for every distinct value. The actual number of
steps is not 5000; it is either the number of distinct values plus one (for dense
frequency cells) or twice the number of values plus one (for sparse frequency
cells).

Scan types, sort requirements, and locking
Table 33-1 shows the types of scans performed during update statistics, the
types of locks acquired, and when sorts are needed.

Table 33-1: Scans, sorts, and locking during update statistics

update statistics specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan of each
nonclustered index

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan of each
nonclustered index and the clustered
index, if one exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name

CHAPTER 33 Using Statistics to Improve Performance

751

Sorts for unindexed or non leading columns
For unindexed columns and columns that are not the leading columns in
indexes, Adaptive Server performs a serial table scan, copying the column
values into a worktable, and then sorts the worktable in order to build the
histogram. The sort is performed in serial, unless the with consumers clause is
specified.

See Chapter 24, “Parallel Sorting,”, for information on parallel sort
configuration requirements.

Locking, scans, and sorts during update index statistics
The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the equivalent
index-level and column-level command. For example, if the salesdetail table
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num,
title_id), this command:

update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

Allpages-locked table Leaf level index scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts
the worktable

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan; creates a worktable and sorts
the worktable

Level 0; dirty reads

update statistics specifying Scans and sorts performed Locking

Scan types, sort requirements, and locking

752

Locking, scans and sorts during update all statistics
The update all statistics commands generates a series of update statistics
operations for each index on the table, followed by a series of update statistics
operations for all unindexed columns, followed by an update partition statistics
operation.

Using the with consumers clause
The with consumers clause for update statistics is designed for use on
partitioned tables on RAID devices, which appear to Adaptive Server as a
single I/O device, but which are capable of producing the high throughput
required for parallel sorting. Chapter 24, “Parallel Sorting,” for more
information.

Reducing update statistics impact on concurrent processes
Since update statistics uses dirty reads (transaction isolation level 0) for data-
only locked tables, it can be run while other tasks are active on the server, and
does not block access to tables and indexes. Updating statistics for leading
columns in indexes requires only a leaf-level scan of the index, and does not
require a sort, so updating statistics for these columns does not affect
concurrent performance very much.

However, updating statistics for unindexed and non leading columns, which
require a table scan, worktable, and sort can affect concurrent processing.

• Sorts are CPU intensive. Use a serial sort, or a small number of worker
processes if you want to minimize CPU utilization. Alternatively, you can
use execution classes to set the priority for update statistics.

See Chapter 3, “Using Engines and CPUs,”.

• The cache space required for merging sort runs is taken from the data
cache, and some procedure cache space is also required. Setting the
number of sort buffers to a low value reduces the space used in the buffer
cache.

If number of sort buffers is set to a large value, it takes more space from the
data cache, and may also cause stored procedures to be flushed from the
procedure cache, since procedure cache space is used while merging
sorted values.

CHAPTER 33 Using Statistics to Improve Performance

753

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command
In pre-11.9 versions of SQL Server and Adaptive Server, dropping an index
removes the distribution page for the index. In version 11.9.2, maintaining
column-level statistics is under explicit user control, and the optimizer can use
column-level statistics even when an index does not exist. The delete statistics
command allows you to drop statistics for specific columns.

If you create an index and then decide to drop it because it is not useful for data
access, or because of the cost of index maintenance during data modifications,
you need to determine:

• Whether the statistics on the index are useful to the optimizer.

• Whether the distribution of key values in the columns for this index are
subject to change over time as rows are inserted and deleted.

If the distribution of key values changes, you need to run update statistics
periodically to maintain useful statistics.

This example command deletes the statistics for the price column in the titles
table:

delete statistics titles(price)

Note The delete statistics command, when used with a table name, removes all
statistics for a table, even where indexes exist.

You must run update statistics on the table to restore the statistics for the index.

When row counts may be inaccurate
Row count values for the number of rows, number of forwarded rows, and
number of deleted rows may be inaccurate, especially if query processing
includes many rollback commands. If workloads are extremely heavy, and the
housekeeper task does not run often, these statistics are more likely to be
inaccurate.

When row counts may be inaccurate

754

Running update statistics corrects these counts in systabstats.

Running dbcc checktable or dbcc checkdb updates these values in memory.

When the housekeeper task runs, or when you execute sp_flushstats, these
values are saved in systabstats.

Note The configuration parameter housekeeper free write percent must be set
to 1 or greater to enable housekeeper statistics flushing.

755

C H A P T E R 3 4 Using the set statistics
Commands

Contains a guide to using the set statistics command.

Command syntax
The syntax for the set statistics commands is:

set statistics {io, simulate, subquerycache, time} [on | off]

You can issue a single command:

set statistics io on

You can combine more than one command on a single line by separating
them with commas:

set statistics io, time on

Topic Page
Command syntax 755

Using simulated statistics 756

Checking subquery cache performance 756

Checking compile and execute time 756

Reporting physical and logical I/O statistics 757

Using simulated statistics

756

Using simulated statistics
The optdiag utility command allows you to load simulated statistics and
perform query diagnosis using those statistics. Since you can load
simulated statistics even for tables that are empty, using simulated
statistics allows you to perform tuning diagnostics in a very small database
that contains only the tables and indexes. Simulated statistics do not
overwrite any existing statistics when they are loaded, so you can also load
them into an existing database.

Once simulated statistics have been loaded, instruct the optimizer to use
them (rather than the actual statistics):

set statistics simulate on

For complete information on using simulated statistics, see “Using
simulated statistics” on page 856.

Checking subquery cache performance
When subqueries are not flattened or materialized, a subquery cache is
created to store results of earlier executions of the subquery to reduce the
number of expensive executions of the subquery.

See “Displaying subquery cache information” on page 508 for
information on using this option.

Checking compile and execute time
set statistics time displays information about the time it takes to parse and
execute Adaptive Server commands.

Parse and Compile Time 57.
SQL Server cpu time: 5700 ms.

Execution Time 175.
SQL Server cpu time: 17500 ms. SQL Server elapsed time: 70973 ms.

The meaning of this output is:

CHAPTER 34 Using the set statistics Commands

757

• Parse and Compile Time – The number of CPU ticks taken to parse,
optimize, and compile the query. See below for information on
converting ticks to milliseconds.

• SQL Server cpu time – Shows the CPU time in milliseconds.

• Execution Time – The number of CPU ticks taken to execute the
query.

• SQL Server cpu time – The number of CPU ticks taken to execute the
query, converted to milliseconds.

• SQL Server elapsed time – The difference in milliseconds between
the time the command started and the current time, as taken from the
operating system clock.

This output shows that the query was parsed and compiled in 57 clock
ticks. It took 175 ticks, or 17.5 seconds, of CPU time to execute. Total
elapsed time was 70.973 seconds, indicating that Adaptive Server spent
some time processing other tasks or waiting for disk or network I/O to
complete.

Converting ticks to milliseconds
 To convert ticks to milliseconds:

To see the clock_rate for your system, execute:

sp_configure "sql server clock tick length"

See the System Administration Guide for more information.

Reporting physical and logical I/O statistics
set statistics io reports information about physical and logical I/O and the
number of times a table was accessed. set statistics io output follows the
query results and provides actual I/O performed by the query.

CPU_ticks * clock_rate

1000
Milliseconds =

Reporting physical and logical I/O statistics

758

For each table in a query, including worktables, statistics io reports one line
of information with several values for the pages read by the query and one
row that reports the total number of writes. If a System Administrator has
enabled resource limits, statistics io also includes a line that reports the
total actual I/O cost for the query. The following example shows statistics
io output for a query with resource limits enabled:

select avg(total_sales)
from titles

Table: titles scan count 1, logical reads: (regular=656 apf=0
total=656), physical reads: (regular=444 apf=212 total=656), apf
IOs used=212
Total actual I/O cost for this command: 13120.
Total writes for this command: 0

The following sections describe the four major components of statistics io
output:

• Actual I/O cost

• Total writes

• Read statistics

• Table name and “scan count”

Total actual I/O cost value
If resource limits are enabled, statistics io prints the “Total actual I/O cost”
line. Adaptive Server reports the total actual I/O as a unitless number. The
formula for determining the cost of a query is:

This formula multiplies the “cost” of a logical I/O by the number of logical
I/Os and the “cost” of a physical I/O by the number of physical I/Os.

For the example above that performs 656 physical reads and 656 logical
reads, 656 * 2 + 656 * 18 = 13120, which is the total I/O cost reported by
statistics io.

Cost = All physical IOs * 18 + All logical IOs * 2

CHAPTER 34 Using the set statistics Commands

759

Statistics for writes
statistics io reports the total number of buffers written by the command.
Read-only queries report writes when they cause dirty pages to move past
the wash marker in the cache so that the write on the page starts.

Queries that change data may report only a single write, the log page write,
because the changed pages remain in the MRU section of the data cache.

Statistics for reads
statistics io reports the number of logical and physical reads for each table
and index included in a query, including worktables. I/O for indexes is
included with the I/O for the table.

Table 34-1 shows the values that statistics io reports for logical and
physical reads.

Table 34-1: statistics io output for reads

Sample output with and without an index

Using statistics io to perform a query on a table without an index and the
same query on the same table with an index shows how important good
indexes can be to query and system performance. Here is a sample query:

select title

Output Description

logical reads

regular Number of times that a page needed by the query was found
in cache; only pages not brought in by asynchronous
prefetch (APF) are counted here.

apf Number of times that a request brought in by an APF request
was found in cache.

total Sum of regular and apf logical reads.

physical reads

regular Number of times a buffer was brought into cache by regular
asynchronous I/O

apf Number of times that a buffer w.as brought into cache by
APF.

total Sum of regular and apf physical reads.

apf IOs used Number of buffers brought in by APF in which one or more
pages were used during the query.

Reporting physical and logical I/O statistics

760

from titles
where title_id = "T5652"

statistics io without an index

With no index on title_id, statistics io reports these values, using 2K I/O:

Table: titles scan count 1, logical
reads:(regular=624 apf=0 total=624), physical
reads:(regular=230 apf=394 total=624), apf IOs
used=394
Total actual I/O cost for this command: 12480.
Total writes for this command: 0

This output shows that:

• The query performed a total of 624 logical I/Os, all regular logical
I/Os.

• The query performed 624 physical reads. Of these, 230 were regular
asynchronous reads, and 394 were asynchronous prefetch reads.

• All of the pages read by APF were used by the query.

statistics io with an Index

With a clustered index on title_id, statistics io reports these values for the
same query, also using 2K I/O:

Table: titles scan count 1, logical reads: (regular=3 apf=0
total=3),
physical reads: (regular=3 apf=0 total=3), apf IOs used=0
Total actual I/O cost for this command: 60.
Total writes for this command: 0

The output shows that:

• The query performed 3 logical reads.

• The query performed 3 physical reads: 2 reads for the index pages and
1 read for the data page.

statistics io output for cursors
For queries using cursors, statistics io prints the cumulative I/O since the
cursor was opened:

1> open c

CHAPTER 34 Using the set statistics Commands

761

Table: titles scan count 0, logical reads: (regular=0 apf=0 total=0),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total actual I/O cost for this command: 0.
Total writes for this command: 0

1> fetch c

title_id type price
 -------- ------------ ------------------------
 T24140 business 201.95
Table: titles scan count 1, logical reads: (regular=3 apf=0 total=3),
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total actual I/O cost for this command: 6.
Total writes for this command: 0

1> fetch c

title_id type price
 -------- ------------ ------------------------
 T24226 business 201.95
Table: titles scan count 1, logical reads: (regular=4 apf=0
total=4), physical reads: (regular=0 apf=0 total=0), apf IOs
used=0
Total actual I/O cost for this command: 8.
Total writes for this command: 0

Scan count
statistics io reports the number of times a query accessed a particular table.
A “scan” can represent any of these access methods:

• A table scan.

• An access via a clustered index. Each time the query starts at the root
page of the index and follows pointers to the data pages, it is counted
as a scan.

• An access via a nonclustered index. Each time the query starts at the
root page of the index and follows pointers to the leaf level of the
index (for a covered query) or to the data pages, it is counted.

• If queries run in parallel, each worker process access to the table is
counted as a scan.

Reporting physical and logical I/O statistics

762

Use showplan, as described in Chapter 35, “Using set showplan,” to
determine which access method is used.

Queries reporting a scan count of 1

Examples of queries that return a scan count of 1 are:

• A point query:

select title_id
from titles
 where title_id = "T55522"

• A range query:

select au_lname, au_fname
 from authors
 where au_lname > "Smith"
 and au_lname < "Smythe"

If the columns in the where clauses of these queries are indexed, the
queries can use the indexes to scan the tables; otherwise, they perform
table scans. In either case, they require only a single scan of the table to
return the required rows.

Queries reporting a scan count of more than 1

Examples of queries that return larger scan count values are:

• Parallel queries that report a scan for each worker process.

• Queries that have indexed where clauses connected by or report a scan
for each or clause. If the query uses the special OR strategy, it reports
one scan for each value. If the query uses the OR strategy, it reports
one scan for each index, plus one scan for the RID list access.

This query uses the special OR strategy, so it reports a scan count of
2 if the titles table has indexes on title_id and another on pub_id:

select title_id
from titles
 where title_id = "T55522"
 or pub_id = "P988"

Table: titles scan count 2,logical reads: (regular=149 apf=0
total=149), physical reads: (regular=63 apf=80 total=143), apf IOs
used=80
Table: Worktable1 scan count 1, logical reads: (regular=172 apf=0
total=172), physical reads: (regular=0 apf=0 total=0), apf IOs

CHAPTER 34 Using the set statistics Commands

763

The I/O for the worktable is also reported.

• Nested-loop joins that scan inner tables once for each qualifying row
in the outer table. In the following example, the outer table,
publishers, has three publishers with the state “NY”, so the inner table,
titles, reports a scan count of 3:

select title_id
from titles t, publishers p
where t.pub_id = p.pub_id
 and p.state = "NY"

Table: titles scan count 3,logical reads: (regular=442 apf=0
total=442), physical reads: (regular=53 apf=289 total=342), apf IOs
used=289
Table: publishers scan count 1, logical reads: (regular=2 apf=0
total=2), physical reads: (regular=2 apf=0 total=2), apf IOs used=0

This query performs a table scan on publishers, which occupies only
2 data pages, so 2 physical I/Os are reported. There are 3 matching
rows in publishers, so the query scans titles 3 times, using an index on
pub_id.

• Merge joins with duplicate values in the outer table restart the scan for
each duplicate value, and report an additional scan count each time.

Queries reporting scan count of 0

Multistep queries and certain other types of queries may report a scan
count of 0. Some examples are:

• Queries that perform deferred updates

• select...into queries

• Queries that create worktables

Relationship between physical and logical reads
If a page needs to be read from disk, it is counted as a physical read and a
logical read. Logical I/O is always greater than or equal to physical I/O.

Logical I/O always reports 2K data pages. Physical reads and writes are
reported in buffer-sized units. Multiple pages that are read in a single I/O
operation are treated as a unit: they are read, written, and moved through
the cache as a single buffer.

Reporting physical and logical I/O statistics

764

Logical reads, physical reads, and 2K I/O

With 2K I/O, the number of times that a page is found in cache for a query
is logical reads minus physical reads. When the total number of logical
reads and physical reads is the same for a table scan, it means that each
page was read from disk and accessed only once during the query.

When pages for the query are found in cache, logical reads are higher than
physical reads. This happens frequently with pages from higher levels of
the index, since they are reused often, and tend to remain in cache.

Physical reads and large I/O

Physical reads are not reported in pages, but in buffers, that is, the actual
number of times Adaptive Server accesses the disk.

• If the query uses 16K I/O (showplan reports the I/O size), a single
physical read brings 8 data pages into cache.

• If a query reports 100 16K physical reads, it has read 800 data pages
into cache.

• If the query needs to scan each of those data pages, it reports 800
logical reads.

• If a query, such as a join query, must read the page multiple times
because other I/O has flushed the page from the cache, each physical
read is counted.

Reads and writes on worktables

Reads and writes are reported for any worktable that needs to be created
for the query. When a query creates more than one worktable, the
worktables are numbered in statistics io output to correspond to the
worktable numbers used in showplan output.

Effects of caching on reads

If you are testing a query and checking its I/O, and you execute the same
query a second time, you may get surprising physical read values,
especially if the query uses LRU replacement strategy.

The first execution reports a high number of physical reads; the second
execution reports 0 physical reads.

CHAPTER 34 Using the set statistics Commands

765

The first time you execute the query, all the data pages are read into cache
and remain there until other server processes flush them from the cache.
Depending on the cache strategy used for the query, the pages may remain
in cache for a longer or shorter period of time.

• If the query uses the fetch-and-discard (MRU) cache strategy, the
pages are read into the cache at the wash marker.

In small or very active caches, pages read into the cache at the wash
marker are flushed quickly.

• If the query uses LRU cache strategy to read the pages in at the top of
the MRU end of the page chain, the pages remain in cache for longer
periods of time.

During actual use on a production system, a query can be expected to find
some of the required pages already in the cache, from earlier access by
other users, while other pages need to be read from disk. Higher levels of
indexes, in particular, tend to be frequently used, and tend to remain in the
cache.

If you have a table or index bound to a cache that is large enough to hold
all the pages, no physical I/O takes place once the object has been read into
cache.

However, during query tuning on a development system with few users,
you may want to clear the pages used for the query from cache in order to
see the full physical I/O needed for a query. You can clear an object’s pages
from cache by:

• Changing the cache binding for the object:

• If a table or index is bound to a cache, unbind it, and rebind it.

• If a table or index is not bound to a cache, bind it to any cache
available, then unbind it.

You must have at least one user-defined cache to use this option.

• If you do not have any user-defined caches, you can execute a
sufficient number of queries on other tables, so that the objects of
interest are flushed from cache. If the cache is very large, this can be
time-consuming.

• The only other alternative is rebooting the server.

For more information on testing and cache performance, see “Testing data
cache performance” on page 306.

Reporting physical and logical I/O statistics

766

statistics io and merge joins
statistics io output does not include sort costs for merge joins. If you have
allow resource limits enabled, the sort cost is not reported in the “Total
estimated I/O cost” and “Total actual I/O cost” statistics. Only dbcc
traceon(310) shows these costs.

767

C H A P T E R 3 5 Using set showplan

This chapter describes each message printed by the showplan utility.
showplan displays the steps performed for each query in a batch, the keys
and indexes used for the query, the order of joins, and special optimizer
strategies.

Using
To see the query plan for a query, use:

set showplan on

To stop displaying query plans, use:

set showplan off

You can use showplan in conjunction with other set commands.

When you want to display showplans for a stored procedure, but not
execute them, use the set fmtonly command.

See Chapter 19, “Query Tuning Tools,” for information on how options
affect each other’s operation.

Note Do not use set noexec with stored procedures - compilation and
execution will not occur and you will not get the necessary output

Topic Page
Using 767

Basic showplan messages 768

showplan messages for query clauses 776

Messages describing access methods, caching, and I/O cost 787

showplan messages for parallel queries 808

showplan messages for subqueries 813

Basic showplan messages

768

Basic showplan messages
This section describes showplan messages that are printed for most select,
insert, update, and delete operations.

This section describes showplan messages that are printed for most select,
insert, update, and delete operations.

Query plan delimiter message
QUERY PLAN FOR STATEMENT N (at line N)

Adaptive Server prints this line once for each query in a batch. Its main
function is to provide a visual cue that separates one section of showplan
output from the next section. Line numbers are provided to help you match
query output with your input.

Step message
STEP N

showplan output displays “STEP N” for every query, where N is an integer,
beginning with “STEP 1”. For some queries, Adaptive Server cannot
retrieve the results in a single step and breaks the query plan into several
steps. For example, if a query includes a group by clause, Adaptive Server
breaks it into at least two steps:

• One step to select the qualifying rows from the table and to group
them, placing the results in a worktable

• Another step to return the rows from the worktable

This example demonstrates a single-step query.

select au_lname, au_fname
from authors
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors

CHAPTER 35 Using set showplan

769

 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Multiple-step queries are demonstrated following “GROUP BY message”
on page 777.

Query type message
The type of query is query type.

This message describes the type of query for each step. For most queries
that require tuning, the value for query type is SELECT, INSERT,
UPDATE, or DELETE. However, the query type can include any Transact-
SQL command that you issue while showplan is enabled. For example,
here is output from a create index command:

STEP 1
 The type of query is CREATE INDEX.
 TO TABLE
 titleauthor

FROM TABLE message
FROM TABLE
 tablename [correlation_name]

This message indicates which table the query is reading from. The “FROM
TABLE” message is followed on the next line by the table name. If the
from clause includes correlation names for tables, these are printed after
the table names. When queries create and use worktables, the “FROM
TABLE” prints the name of the worktable.

When your query joins one or more tables, the order of “FROM TABLE”
messages in the output shows you the order in which the query plan chosen
by the optimizer joins the tables. This query displays the join order in a
three-table join:

select a.au_id, au_fname, au_lname
 from titles t, titleauthor ta, authors a
where a.au_id = ta.au_id

Basic showplan messages

770

 and ta.title_id = t.title_id
 and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 a
 Nested iteration.
 Index : au_lname_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_lname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titleauthor
 ta
 Nested iteration.
 Index : at_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:
 au_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 titles
 t
 Nested iteration.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:

CHAPTER 35 Using set showplan

771

 title_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

The sequence of tables in this output shows the order chosen by the query
optimizer, which is not the order in which they were listed in the from
clause or where clause:

• First, the qualifying rows from the authors table are located (using the
search clause on au_lname).

• Then, those rows are joined with the titleauthor table (using the join
clause on the au_id columns).

• Finally, the titles table is joined with the titleauthor table to retrieve the
desired columns (using the join clause on the title_id columns).

FROM TABLE and referential integrity

When you insert or update rows in a table that has a referential integrity
constraint, the showplan output includes “FROM TABLE” and other
messages indicating the method used to access the referenced table. This
salesdetail table definition includes a referential integrity check on the
title_id column:

create table salesdetail (
 stor_id char(4),
 ord_num varchar(20),
 title_id tid
 references titles(title_id),
 qty smallint,
 discount float)

An insert to salesdetail, or an update on the title_id column, requires a
lookup in the titles table:

insert salesdetail values ("S245", "X23A5", "T10",
15, 40.25)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

 FROM TABLE
 titles
 Using Clustered Index.
 Index : title_id_ix

Basic showplan messages

772

 Forward scan.
 Positioning by key.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 salesdetail

The clustered index on title_id_ix is used to verify the referenced value.

TO TABLE message
TO TABLE
 tablename

When a command such as insert, delete, update, or select into modifies or
attempts to modify one or more rows of a table, the “TO TABLE” message
displays the name of the target table. For operations that require an
intermediate step to insert rows into a worktable, “TO TABLE” indicates
that the results are going to the “Worktable” table rather than to a user
table. This insert command shows the use of the “TO TABLE” statement:

insert sales
values ("8042", "QA973", "12/7/95")
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 TO TABLE
 sales

Here is a command that performs an update:

update publishers
set city = "Los Angeles"
where pub_id = "1389"

 QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is UPDATE.
 The update mode is direct.

 FROM TABLE
 publishers

CHAPTER 35 Using set showplan

773

 Nested iteration.
 Using Clustered Index.
 Index : publ_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 pub_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 publishers

The update query output indicates that the publishers table is used as both
the “FROM TABLE” and the “TO TABLE”. In the case of update
operations, the optimizer needs to read the table that contains the row(s) to
be updated, resulting in the “FROM TABLE” statement, and then needs to
modify the row(s), resulting in the “TO TABLE” statement.

Update mode messages
Adaptive Server uses different modes to perform update operations such
as insert, delete, update, and select into. These methods are called direct
update mode and deferred update mode.

Direct update mode
The update mode is direct.

Whenever possible, Adaptive Server uses direct update mode, since it is
faster and generates fewer log records than deferred update mode.

The direct update mode operates as follows:

1 Pages are read into the data cache.

2 The changes are recorded in the transaction log.

3 The change is made to the data page.

4 The transaction log page is flushed to disk when the transaction
commits.

For more information on the different types of direct updates, see “How
Update Operations Are Performed” on page 112.

Basic showplan messages

774

Adaptive Server uses direct update mode for the following delete
command:

delete
from authors
where au_lname = "Willis"
and au_fname = "Max"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is DELETE.
 The update mode is direct.

 FROM TABLE
 authors
 Nested iteration.
 Using Clustered Index.
 Index : au_names_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_lname ASC
 au_fname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 authors

Deferred mode
The update mode is deferred.

In deferred mode, processing takes place in these steps:

1 For each qualifying data row, Adaptive Server writes transaction log
records for one deferred delete and one deferred insert.

2 Adaptive Server scans the transaction log to process the deferred
inserts, changing the data pages and any affected index pages.

Consider the following insert...select operation, where mytable is a heap
without a clustered index or a unique nonclustered index:

insert mytable
 select title, price * 2
 from mytable

CHAPTER 35 Using set showplan

775

 QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is deferred.

 FROM TABLE
 mytable
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 mytable

This command copies every row in the table and appends the rows to the
end of the table.

It needs to differentiate between the rows that are currently in the table
(prior to the insert command) and the rows being inserted so that it does
not get into a continuous loop of selecting a row, inserting it at the end of
the table, selecting the row that it just inserted, and reinserting it.

The query processor solves this problem by performing the operation in
two steps:

1 It scans the existing table and writes insert records into the transaction
log for each row that it finds.

2 When all the “old” rows have been read, it scans the log and performs
the insert operations.

Deferred index and deferred varcol messages
The update mode is deferred_varcol.

The update mode is deferred_index.

These showplan messages indicate that Adaptive Server may process an
update command as a deferred index update.

Adaptive Server uses deferred_varcol mode when updating one or more
variable-length columns. This update may be done in deferred or direct
mode, depending on information that is available only at runtime.

showplan messages for query clauses

776

Adaptive Server uses deferred_index mode when the index is unique or
may change as part of the update. In this mode, Adaptive Server deletes
the index entries in direct mode but inserts them in deferred mode.

Optimized using messages
These messages are printed when special optimization options are used for
a query.

Simulated statistics message
Optimized using simulated statistics.

The simulated statistics message is printed when:

• The set statistics simulate option was active when the query was
optimized, and

• Simulated statistics have been loaded using optdiag.

Abstract plan messages
Optimized using an Abstract Plan (ID : N).

The message above is printed when an abstract plan was associated with
the query. The variable prints the ID number of the plan.

Optimized using the Abstract Plan in the PLAN clause.

The message above is printed when the plan clause is used for a select,
update, or delete statement. See Creating and Using Abstract Plans in the
Performance and Tuning Guide: Optimizing and Abstract Plans for more
information.

showplan messages for query clauses
Use of certain Transact-SQL clauses, functions, and keywords is reflected
in showplan output. These include group by, aggregates, distinct, order by,
and select into clauses.

CHAPTER 35 Using set showplan

777

Use of certain Transact-SQL clauses, functions, and keywords is reflected
in showplan output. These include group by, aggregates, distinct, order by,
and select into clauses.

Table 35-1: showplan messages for various clauses

GROUP BY message
GROUP BY

This statement appears in the showplan output for any query that contains
a group by clause. Queries that contain a group by clause are always
executed in at least two steps:

• One step selects the qualifying rows into a worktable and groups
them.

Message Explanation

GROUP BY The query contains a group by statement.

The type of query is SELECT (into
WorktableN).

The step creates a worktable to hold
intermediate results.

Evaluate Grouped type AGGREGATE

Evaluate Ungrouped type AGGREGATE.

The query contains an aggregate function.

“Grouped” indicates that there is a grouping
column for the aggregate (vector aggregate).

“Ungrouped” indicates that there is no
grouping column (scalar aggregate). The
variable indicates the type of aggregate.

Evaluate Grouped ASSIGNMENT
OPERATOR

Evaluate Ungrouped ASSIGNMENT
OPERATOR

The query includes compute (ungrouped) or
compute by (grouped).

WorktableN created for DISTINCT. The query contains the distinct keyword in the
select list and requires a sort to eliminate
duplicates.

WorktableN created for ORDER BY. The query contains an order by clause that
requires ordering rows.

This step involves sorting. The query includes on order by or distinct
clause, and results must be sorted.

Using GETSORTED The query created a worktable and sorted it.
GETSORTED is a particular technique used
to return the rows.

The sort for WorktableN is done in Serial.

The sort for WorktableN is done in Parallel.

Indicates how the sort for a worktable is
performed.

showplan messages for query clauses

778

• Another step returns the rows from the worktable.

Selecting into a worktable
The type of query is SELECT (into WorktableN).

Queries using a group by clause first put qualifying results into a
worktable. The data is grouped as the table is generated. A second step
returns the grouped rows.

The following example returns a list of all cities and indicates the number
of authors that live in each city. The query plan shows the two steps: the
first step selects the rows into a worktable, and the second step retrieves
the grouped rows from the worktable:

select city, total_authors = count(*)
 from authors
 group by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped COUNT AGGREGATE.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

CHAPTER 35 Using set showplan

779

 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Grouped aggregate message
Evaluate Grouped type AGGREGATE

This message is printed by queries that contain aggregates and group by or
compute by.

The variable indicates the type of aggregate—COUNT, SUM OR
AVERAGE, MINIMUM, or MAXIMUM.

avg reports both COUNT and SUM OR AVERAGE; sum reports SUM OR
AVERAGE. Two additional types of aggregates (ONCE and ANY) are
used internally by Adaptive Server while processing subqueries.

See “Internal Subquery Aggregates” on page 864.

Grouped aggregates and group by

When an aggregate function is combined with group by, the result is called
a grouped aggregate, or vector aggregate. The query results have one row
for each value of the grouping column or columns.

The following example illustrates a grouped aggregate:

select type, avg(advance)
from titles
group by type

 QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped COUNT AGGREGATE.
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

showplan messages for query clauses

780

 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

In the first step, the worktable is created, and the aggregates are computed.
The second step selects the results from the worktable.

compute by message
Evaluate Grouped ASSIGNMENT OPERATOR

Queries using compute by display the same aggregate messages as group
by, with the “Evaluate Grouped ASSIGNMENT OPERATOR” message.

The values are placed in a worktable in one step, and the computation of
the aggregates is performed in a second step. This query uses type and
advance, like the group by query example above:

select type, advance from titles
having title like "Compu%"
order by type
compute avg(advance) by type

In the showplan output, the computation of the aggregates takes place in
step 2:

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 titles
 Nested iteration.

CHAPTER 35 Using set showplan

781

 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.
 Evaluate Grouped COUNT AGGREGATE.
 Evaluate Grouped ASSIGNMENT OPERATOR.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Ungrouped aggregate message
Evaluate Ungrouped type AGGREGATE.

This message is reported by:

• Queries that use aggregate functions, but do not use group by

• Queries that use compute

Ungrouped aggregates

When an aggregate function is used in a select statement that does not
include a group by clause, it produces a single value. The query can operate
on all rows in a table or on a subset of the rows defined by a where clause.

showplan messages for query clauses

782

When an aggregate function produces a single value, the function is called
a scalar aggregate, or an ungrouped aggregate. Here is showplan output
for an ungrouped aggregate:

select avg(advance)
from titles
where type = "business"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped COUNT AGGREGATE.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Index : type_price
 Forward scan.
 Positioning by key.
 Keys are:
 type ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 STEP 2
 The type of query is SELECT.

This is a two-step query, similar to the showplan from the group by query
shown earlier.

Since the scalar aggregate returns a single value, Adaptive Server uses an
internal variable to compute the result of the aggregate function, as the
qualifying rows from the table are evaluated. After all rows from the table
have been evaluated (step 1), the final value from the variable is selected
(step 2) to return the scalar aggregate result.

compute messages
Evaluate Ungrouped ASSIGNMENT OPERATOR

When a query includes compute to compile a scalar aggregate, showplan
prints the “Evaluate Ungrouped ASSIGNMENT OPERATOR” message.
This query computes an average for the entire result set:

CHAPTER 35 Using set showplan

783

select type, advance from titles
where title like "Compu%"
order by type
compute avg(advance)

The showplan output shows that the computation of the aggregate values
takes place in the step 2:

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
 Evaluate Ungrouped COUNT AGGREGATE.
 Evaluate Ungrouped ASSIGNMENT OPERATOR.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

showplan messages for query clauses

784

messages for order by and distinct
Some queries that include distinct use a sort step to enforce the uniqueness
of values in the result set. distinct queries and order by queries do not
require the sorting step when the index used to locate rows supports the
order by or distinct clause.

For those cases where the sort is performed, the distinct keyword in a select
list and the order by clause share some showplan messages:

• Each generates a worktable message.

• The message “This step involves sorting.”.

• The message “Using GETSORTED”.

Worktable message for distinct
WorktableN created for DISTINCT.

A query that includes the distinct keyword excludes all duplicate rows from
the results so that only unique rows are returned. When there is no useful
index, Adaptive Server performs these steps to process queries that
include distinct:

1 It creates a worktable to store all of the results of the query, including
duplicates.

2 It sorts the rows in the worktable, discards the duplicate rows, and
then returns the rows.

Subqueries with existence joins sometimes create a worktable and sort it
to remove duplicate rows.

See “Flattening in, any, and exists subqueries” on page 145 for more
information.

The “WorktableN created for DISTINCT” message appears as part of
“Step 1” in showplan output. “Step 2” for distinct queries includes the
messages “This step involves sorting” and “Using GETSORTED”. See
“Sorting messages” on page 812.

select distinct city
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.

CHAPTER 35 Using set showplan

785

 Worktable1 created for DISTINCT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

Worktable message for order by
WorktableN created for ORDER BY.

Queries that include an order by clause often require the use of a temporary
worktable. When the optimizer cannot use an index to order the result
rows, it creates a worktable to sort the result rows before returning them.
This example shows an order by clause that creates a worktable because
there is no index on the city column:

select *
from authors
order by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for ORDER BY.

showplan messages for query clauses

786

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

order by queries and indexes

Certain queries using order by do not require a sorting step, depending on
the type of index used to access the data.

See Chapter 8, “Indexing for Performance,” for more information.

Sorting messages
These messages report on sorts.

Step involves sorting message
This step involves sorting.

This showplan message indicates that the query must sort the intermediate
results before returning them to the user. Queries that use distinct or that
have an order by clause not supported by an index require an intermediate
sort. The results are put into a worktable, and the worktable is then sorted.

CHAPTER 35 Using set showplan

787

For examples of this message, see “Worktable message for distinct” on
page 810 and “Worktable message for order by” on page 811.

GETSORTED message
Using GETSORTED

This statement indicates one of the ways that Adaptive Server returns
result rows from a table.

In the case of “Using GETSORTED,” the rows are returned in sorted
order. However, not all queries that return rows in sorted order include this
step. For example, order by queries whose rows are retrieved using an
index with a matching sort sequence do not require “GETSORTED.”

The “Using GETSORTED” method is used when Adaptive Server must
first create a temporary worktable to sort the result rows and then return
them in the proper sorted order. The examples for distinct on and for order
by on show the “Using GETSORTED” message.

Serial or parallel sort message
The sort for WorktableN is done in Serial.

The sort for WorktableN is done in Parallel.

These messages indicate whether a serial or parallel sort was performed
for a worktable. They are printed after the sort manager determines
whether a given sort should be performed in parallel or in serial.

If set noexec is in effect, the worktable is not created, so the sort is not
performed, and no message is displayed.

Messages describing access methods, caching, and
I/O cost

showplan output provides information about access methods and caching
strategies.

Messages describing access methods, caching, and I/O cost

788

Auxiliary scan descriptors message
Auxiliary scan descriptors required: N

When a query involving referential integrity requires a large number of
user or system tables, including references to other tables to check
referential integrity, this showplan message indicates the number of
auxiliary scan descriptors needed for the query. If a query does not exceed
the number of pre allocated scan descriptors allotted for the session, the
“Auxiliary scan descriptors required” message is not printed.

The following example shows partial output for a delete from the
employees table, which is referenced by 30 foreign tables:

delete employees
where empl_id = "222-09-3482"

QUERY PLAN FOR STATEMENT 1 (at line 1).

Auxiliary scan descriptors required: 4

 STEP 1
 The type of query is DELETE.
 The update mode is direct.

 FROM TABLE
 employees
 Nested iteration.
 Using Clustered Index.
 Index : employees_empl_i_10080066222
 Forward scan.
 Positioning by key.
 Keys are:
 empl_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 benefits
 Index : empl_id_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:

CHAPTER 35 Using set showplan

789

 empl_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 .
 .
 .
 FROM TABLE
 dependents
 Index : empl_id_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be
read.
 Keys are:
 empl_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 TO TABLE
 employees

Nested iteration message
Nested Iteration.

This message indicates one or more loops through a table to return rows.
Even the simplest access to a single table is an iteration, as shown here:

select * from publishers
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

For queries that perform nested-loop joins, access to each table is nested
within the scan of the outer table.

See “Nested-Loop Joins” on page 128 for more information.

Messages describing access methods, caching, and I/O cost

790

Merge join messages
Merge join (outer table).

Merge join (inner table).

Merge join messages indicate the use of a merge join and the table’s
position (inner or outer) with respect to the other table in the merge join.
Merge join messages appear immediately after the table name in the

FROM TABLE

 output. This query performs a mixture of merge and nested-loop joins:

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
 publishers p
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and p.pub_id = t.pub_id
 and type = ’business’
 and price < $25

Messages for merge joins are printed in bold type in the showplan output:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker
processes.

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Executed in parallel by coordinating process and 3
worker processes.

 FROM TABLE
 titles
 t
 Merge join (outer table).
 Parallel data merge using 3 worker processes.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

CHAPTER 35 Using set showplan

791

 FROM TABLE
 titleauthor
 ta
 Merge join (inner table).
 Index : ta_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will
not be read.
 Keys are:
 title_id ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf
pages.

 FROM TABLE
 authors
 a
 Nested iteration.
 Index : au_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 au_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf
pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.
 Worktable1 created for sort merge join.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 Executed by coordinating process.

 FROM TABLE
 publishers
 p
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

Messages describing access methods, caching, and I/O cost

792

 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable2.
 Worktable2 created for sort merge join.

 STEP 3
 The type of query is SELECT.
 Executed by coordinating process.

 FROM TABLE
 Worktable1.
 Merge join (outer table).
 Serial data merge.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable2.
 Merge join (inner table).
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Total estimated I/O cost for statement 1 (at line 1): 4423.

The sort for Worktable1 is done in Serial

The sort for Worktable2 is done in Serial

This query performed the following joins:

• A full-merge join on titles and titleauthor, with titles as the outer table

• A nested-loop join with the authors table

• A sort-merge join with the publishers table

Worktable message
WorktableN created for sort merge join.

CHAPTER 35 Using set showplan

793

If a merge join requires a sort for a table, a worktable is created and sorted
into order by the join key. A later step in the query uses the worktable as
either an inner table or outer table.

Table scan message
Table Scan.

This message indicates that the query performs a table scan. The following
query shows a typical table scan:

select au_lname, au_fname
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

Clustered index message
Using Clustered Index.

This showplan message indicates that the query optimizer chose to use the
clustered index on a table to retrieve the rows. The following query shows
the clustered index being used to retrieve the rows from the table:

select title_id, title
from titles
where title_id like "T9%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

Messages describing access methods, caching, and I/O cost

794

 FROM TABLE
 titles
 Nested iteration.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

Index name message
Index : indexname

This message indicates that the query is using an index to retrieve the
rows. The message includes the index name.

If the line above this message in the output is “Using Clustered Index,” the
index is clustered; otherwise, the index is nonclustered.

The keys used to position the search are reported in the “Keys are...”
message.

See “Keys message” on page 800.

This query illustrates the use of a nonclustered index to find and return
rows:

select au_id, au_fname, au_lname
from authors
where au_fname = "Susan"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_ix
 Forward scan.

CHAPTER 35 Using set showplan

795

 Positioning by key.
 Keys are:
 au_fname ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

Scan direction messages
Forward scan.

Backward scan.

These messages indicate the direction of a table or index scan.

The scan direction depends on the ordering specified when the indexes
were created and the order specified for columns in the order by clause.

Backward scans cam be used when the order by clause contains the asc or
desc qualifiers on index keys, in the exact opposite of those in the create
index clause. The configuration parameter allow backward scans must be
set to 1 to allow backward scans.

The scan-direction messages are followed by positioning messages. Any
keys used in the query are followed by “ASC” or “DESC”. The forward
and backward scan messages and positioning messages describe whether
a scan is positioned:

• At the first matching index key, at the start of the table, or at the first
page of the leaf-level pages chain, and searching toward end of the
index, or

• At the last matching index key, or end of the table, or last page of the
leaf-level page chain, and searching toward the beginning.

If allow backward scans is set to 0, all accesses use forward scans.

This example uses a backward scan:

select *
from sysmessages
where description like "%Optimized using%"
order by error desc

QUERY PLAN FOR STATEMENT 1 (at line 1).

Messages describing access methods, caching, and I/O cost

796

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 sysmessages
 Nested iteration.
 Table Scan.
 Backward scan.
 Positioning at end of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data
pages.

This query using the max aggregate also uses a backward scan:

select max(error) from sysmessages
QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped MAXIMUM AGGREGATE.

 FROM TABLE
 sysmessages
 Nested iteration.
 Index : ncsysmessages
 Backward scan.
 Positioning by key.
 Scanning only up to the first qualifying row.
 Index contains all needed columns. Base table
will not be read.
 Keys are:
 error ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.

 STEP 2
 The type of query is SELECT.

Positioning messages
Positioning at start of table.

Positioning at end of table.

CHAPTER 35 Using set showplan

797

Positioning by Row IDentifier (RID).

Positioning by key.

Positioning at index start.

Positioning at index end.

These messages describe how access to a table or to the leaf level of an
index takes place. The choices are:

Positioning at start of table.

Indicates a forward table scan, starting at the first row of the table.

Positioning at end of table.

Indicates a backward table scan, starting at the last row of the table.
Positioning by Row IDentifier (RID).

It is printed after the OR strategy has created a dynamic index of row
IDs.

See “Dynamic index message (OR strategy)” on page 801 for more
information about how row IDs are used.

Positioning by key.

Indicates that the index is used to position the search at the first
qualifying row. It is printed for:

• Direct access an individual row in a point query

• Range queries that perform matching scans of the leaf level of an
index

• Range queries that scan the data pages when there is a clustered
index on an allpages-locked table

• Indexed accesses to inner tables in joins

Positioning at index start.
Positioning at index end.

These messages indicate a nonmatching index scan, used when the
index covers the query. Matching scans are positioned by key.

Forward scans are positioned at the start of the index; backward scans
are positioned at the end of the index.

Messages describing access methods, caching, and I/O cost

798

Scanning messages
Scanning only the last page of the table.

This message indicates that a query containing an ungrouped (scalar) max
aggregate can access only the last page of the table to return the value.

Scanning only up to the first qualifying row.

This message appears only for queries that use an ungrouped (scalar) min
aggregate. The aggregated column needs to be the leading column in the
index.

Note For indexes with the leading key created in descending order, the use
of the messages for min and max aggregates is reversed:

min uses “Positioning at index end”

while max prints “Positioning at index start” and “Scanning only up to the
first qualifying row.”

See Performance and Tuning Guide: Optimizing and Abstract Plans for
more information.

Index covering message
Index contains all needed columns. Base table will
not be read.

This message indicates that an index covers the query. It is printed both for
matching and nonmatching scans. Other messages in showplan output help
distinguish these access methods:

• A matching scan reports “Positioning by key.”

A nonmatching scan reports “Positioning at index start,” or
“Positioning at index end” since a nonmatching scan must read the
entire leaf level of the index.

• If the optimizer uses a matching scan, the “Keys are...” message
reports the keys used to position the search. This message is not
included for a nonmatching scan.

The next query shows output for a matching scan, using a composite,
nonclustered index on au_lname, au_fname, au_id:

select au_fname, au_lname, au_id

CHAPTER 35 Using set showplan

799

from authors
where au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_id
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table
will not be read.
 Keys are:
 au_lname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.

With the same composite index on au_lname, au_fname, au_id, this query
performs a nonmatching scan, since the leading column of the index is not
included in the where clause:

select au_fname, au_lname, au_id
from authors
where au_id = "A93278"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_names_id
 Forward scan.
 Positioning at index start.
 Index contains all needed columns. Base table
will not be read.
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index
leaf pages.

Messages describing access methods, caching, and I/O cost

800

Note that the showplan output does not contain a “Keys are...” message,
and the positioning message is “Positioning at index start.” This query
scans the entire leaf level of the nonclustered index, since the rows are not
ordered by the search argument.

Keys message
Keys are:
 key [ASC | DESC] ...

This message is followed by the index key(s) used when Adaptive Server
uses an index scan to locate rows. The index ordering is printed after each
index key, showing the order, ASC for ascending or DESC for descending,
used when the index was created. For composite indexes, all leading keys
in the where clauses are listed.

Matching index scans message
Using N Matching Index Scans.

This showplan message indicates that a query using or clauses or an
in (values list) clause uses multiple index scans (also called the “special
OR strategy”) instead of using a dynamic index.

Multiple matching scans can be used only when there is no possibility that
the or clauses or in list items will match duplicate rows – that is, when there
is no need to build the worktable and perform the sort to remove the
duplicates.

For more information on how queries containing or are processed, see
Performance and Tuning Guide: Optimizing and Abstract Plans.

For queries that use multiple matching scans, different indexes may be
used for some of the scans, so the messages that describe the type of index,
index positioning, and keys used are printed for each scan.

The following example uses multiple matching index scans to return rows:

select title
 from titles
 where title_id in ("T18168","T55370")

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1

CHAPTER 35 Using set showplan

801

 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Using 2 Matching Index Scans
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Dynamic index message (OR strategy)
Using Dynamic Index.

The term dynamic index refers to a worktable of row IDs used to process
some queries that use or clauses or an in (values list) clause. When the OR
strategy is used, Adaptive Server builds a list of all the row IDs that match
the query, sorts the list to remove duplicates, and uses the list to retrieve
the rows from the table.

For a full explanation, see Performance and Tuning Guide: Optimizing
and Abstract Plans.

For a query with two SARGs that match the two indexes (one on
au_fname, one on au_lname), the showplan output below includes three
“FROM TABLE” sections:

• The first two “FROM TABLE” blocks in the output show the two
index accesses, one for the first name “William” and one for the last
name “Williams”.

These blocks include the output “Index contains all needed columns,”
since the row IDs can be retrieved from the leaf level of a
nonclustered index.

• The final “FROM TABLE” block shows the “Using Dynamic Index”
output and “Positioning by Row IDentifier (RID).”

Messages describing access methods, caching, and I/O cost

802

In this step, the dynamic index is used to access the data pages to
locate the rows to be returned.

select au_id, au_fname, au_lname
from authors
where au_fname = "William"
 or au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_fname_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 au_fname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 authors
 Nested iteration.
 Index : au_lname_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 au_lname ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

 FROM TABLE
 authors
 Nested iteration.
 Using Dynamic Index.
 Forward scan.
 Positioning by Row IDentifier (RID).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

CHAPTER 35 Using set showplan

803

Reformatting Message
WorktableN Created for REFORMATTING.

When joining two or more tables, Adaptive Server may choose to use a
reformatting strategy to join the tables when the tables are large and the
tables in the join do not have a useful index.

The reformatting strategy:

• Inserts the needed columns from qualifying rows of the smaller of the
two tables into a worktable.

• Creates a clustered index on the join column(s) of the worktable. The
index is built using keys to join the worktable to the other table in the
query.

• Uses the clustered index in the join to retrieve the qualifying rows
from the table.

See Performance and Tuning Guide: Optimizing and Abstract Plans for
more information on reformatting.

The following example illustrates the reformatting strategy. It performs a
three-way join on the titles, titleauthor, and titles tables. There are no
indexes on the join columns in the tables (au_id and title_id), so Adaptive
Server uses the reformatting strategy on two of the tables:

select au_lname, title
from authors a, titleauthor ta, titles t
where a.au_id = ta.au_id
and t.title_id = ta.title_id

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for REFORMATTING.

 FROM TABLE
 titleauthor
 ta
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Messages describing access methods, caching, and I/O cost

804

 TO TABLE
 Worktable1.

 STEP 2
 The type of query is INSERT.
 The update mode is direct.
 Worktable2 created for REFORMATTING.

 FROM TABLE
 authors
 a
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable2.

 STEP 3
 The type of query is SELECT.

 FROM TABLE
 titles
 t
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Using Clustered Index.
 Forward scan.
 Positioning by key.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 Worktable2.
 Nested iteration.
 Using Clustered Index.

CHAPTER 35 Using set showplan

805

 Forward scan.
 Positioning by key.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

This query was run with set sort_merge off. When sort-merge joins are
enabled, this query chooses a sort-merge join instead.

Trigger Log Scan Message
Log Scan.

When an insert, update, or delete statement causes a trigger to fire, and the
trigger includes access to the inserted or deleted tables, these tables are
built by scanning the transaction log.

This example shows the output for the update to the titles table when this
insert fires the totalsales_trig trigger on the salesdetail table:

insert salesdetail values (’7896’, ’234518’,
’TC3218’, 75, 40)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is UPDATE.
 The update mode is direct.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 salesdetail
 EXISTS TABLE : nested iteration.
 Log Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Messages describing access methods, caching, and I/O cost

806

 TO TABLE
 titles

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 4.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 23).

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

 FROM TABLE
 salesdetail
 Nested iteration.
 Log Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

I/O Size Messages
Using I/O size N Kbtyes for data pages.

Using I/O size N Kbtyes for index leaf pages.

The messages report the I/O sizes used in the query. The possible sizes are
2K, 4K, 8K, and 16K.

If the table, index, LOB object, or database used in the query uses a data
cache with large I/O pools, the optimizer can choose large I/O. It can
choose to use one I/O size for reading index leaf pages, and a different size
for data pages. The choice depends on the pool size available in the cache,
the number of pages to be read, the cache bindings for the objects, and the
cluster ratio for the table or index pages.

See Chapter 14, “Memory Use and Performance,” for more information
on large I/O and the data cache.

CHAPTER 35 Using set showplan

807

Cache strategy messages
With <LRU/MRU> Buffer Replacement Strategy for data
pages.

With <LRU/MRU> Buffer Replacement Strategy for index
leaf pages.

These messages indicate the cache strategy used for data pages and for
index leaf pages.

See “Overview of cache strategies” on page 180 for more information on
cache strategies.

Total estimated I/O cost message
Total estimated I/O cost for statement N (at line N): X.

Adaptive Server prints this message only if a System Administrator has
configured Adaptive Server to enable resource limits. Adaptive Server
prints this line once for each query in a batch. The message displays the
optimizer’s estimate of the total cost of logical and physical I/O. If the
query runs in parallel, the cost per thread is printed. System
Administrators can use this value when setting compile-time resource
limits.

See “Total actual I/O cost value” on page 780 for information on how cost
is computed

 If you are using dbcc traceon(310), this value is the sum of the values in
the FINAL PLAN output for the query.

The following example demonstrates showplan output for an Adaptive
Server configured to allow resource limits:

select au_lname, au_fname
from authors
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.

showplan messages for parallel queries

808

 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

Total estimated I/O cost for statement 1 (at line 1): 1160.

For more information on creating resource limits, see in the System
Administration Guide.

showplan messages for parallel queries
showplan reports information about parallel execution, showing which
query steps are executed in parallel.

showplan reports information about parallel execution, explicitly stating
which query steps are executed in parallel.

Table 35-2: showplan messages for parallel queries

Message Explanation

Executed in parallel by coordinating process and N
worker processes.

Indicates that a query is run in parallel,
and shows the number of worker
processes used.

Executed in parallel by N worker processes. Indicates the number of worker
processes used for a query step.

Executed in parallel with a N-way hash scan.

Executed in parallel with a N-way partition scan.

Indicates the number of worker
processes and the type of scan, hash-
based of partition-based, for a query
step.

Parallel work table merge.
Parallel network buffer merge.
Parallel result buffer merge.

Indicates the way in which the results of
parallel scans were merged.

Parallel data merge using N worker processes. Indicates that a merge join used a
parallel data merge, and the number of
worker processes used.

Serial data merge. Indicates that the merge join used a
serial data merge.

AN ADJUSTED QUERY PLAN WILL BE USED
FOR STATEMENT N BECAUSE NOT ENOUGH
WORKER PROCESSES ARE AVAILABLE AT
THIS TIME. ADJUSTED QUERY PLAN:

Indicates that a run-time adjustment to
the number of worker processes was
required.

CHAPTER 35 Using set showplan

809

Executed in parallel messages
The Adaptive Server optimizer uses parallel query optimization strategies
only when a given query is eligible for parallel execution. If the query is
processed in parallel, showplan uses three separate messages to report:

• The fact that some or all of the query was executed by the
coordinating process and worker processes. The number of worker
processes is included in this message.

• The number of worker processes for each step of the query that is
executed in parallel.

• The degree of parallelism for each scan.

Note that the degree of parallelism used for a query step is not the same as
the total number of worker processes used for the query.

For more examples of parallel query plans, see Chapter 7, “Parallel Query
Optimization.”

Coordinating process message
Executed in parallel by coordinating process and N worker processes.

For each query that runs in parallel mode, showplan reports prints this
message, indicating the number of worker processes used.

Worker processes message
Executed in parallel by N worker processes.

For each step in a query that is executed in parallel, showplan reports the
number of worker processes for the step following the “Type of query”
message.

Scan type message
Executed in parallel with a N-way hash scan.

Executed in parallel with a N-way partition scan.

For each step in the query that accesses data in parallel, showplan prints
the number of worker processes used for the scan, and the type of scan,
either “hash” or “partition.”

showplan messages for parallel queries

810

Merge messages

Results from the worker processes that process a query are merged using
one of the following types of merge:

• Parallel worktable merge

• Parallel network buffer merge

• Parallel result buffer merge

Merge message for worktables

Parallel work table merge.

Grouped aggregate results from the worktables created by each worker
process are merged into one result set.

In the following example, titles has two partitions. The showplan
information specific to parallel query processing appears in bold.

select type, sum(total_sales)
 from titles
 group by type

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped SUM OR AVERAGE AGGREGATE.
 Executed in parallel by coordinating process and 2 worker
processes.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 2-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 Parallel work table merge.

 STEP 2
 The type of query is SELECT.

CHAPTER 35 Using set showplan

811

 Executed by coordinating process.

 FROM TABLE
 Worktable1.
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

See “Merge join messages” on page 824 for an example that uses parallel
processing to perform sort-merge joins.

Merge message for buffer merges

Parallel network buffer merge.

Unsorted, non aggregate results returned by the worker processes are
merged into a network buffer that is sent to the client. In the following
example, titles has two partitions.

select title_id from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2 worker processes.

 STEP 1
 The type of query is SELECT.
 Executed in parallel by coordinating process and 2 worker
processes.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 2-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 Parallel network buffer merge.

Merge message for result buffers

Parallel result buffer merge.

showplan messages for parallel queries

812

Ungrouped aggregate results or unsorted, non aggregate variable
assignment results from worker processes are merged.

Each worker process stores the aggregate in a result buffer. The result
buffer merge produces a single value, ranging from zero-length (when the
value is NULL) to the maximum length of a character string.

In the following example, titles has two partitions:

select sum(total_sales)
from titles

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2 worker
processes.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
 Executed in parallel by coordinating process and 2 worker
processes.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 2-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 Parallel result buffer merge.

 STEP 2
 The type of query is SELECT.
 Executed by coordinating process.

Data merge messages
Parallel data merge using N worker processes.

Serial data merge.

The data merge messages indicate whether a serial or parallel data merge
was performed. If the merge is performed in parallel mode, the number of
worker processes is also printed.

For sample output, see “Merge join messages” on page 790“.

CHAPTER 35 Using set showplan

813

Runtime adjustment message
AN ADJUSTED QUERY PLAN WILL BE USED FOR STATEMENT N BECAUSE NOT
ENOUGH WORKER PROCESSES ARE AVAILABLE AT THIS TIME.
ADJUSTED QUERY PLAN:

showplan output displays this message and an adjusted query plan when
fewer worker processes are available at runtime than the number specified
by the optimized query plan.

showplan messages for subqueries
Since subqueries can contain the same clauses that regular queries contain,
their showplan output can include many of the messages listed in earlier
sections.

The showplan messages for subqueries, shown in “Subquery
optimization” on page 499, include delimiters so that you can spot the
beginning and the end of a subquery processing block, the messages that
identify the type of subquery, the place in the outer query where the
subquery is executed, and messages for special types of processing that is
performed only in subqueries.

The showplan messages for subqueries include special delimiters that
allow you to easily spot the beginning and end of a subquery processing
block, messages to identify the type of subquery, the place in the outer
query where the subquery is executed, or special types of processing
performed only in subqueries

Table 35-3: showplan messages for subqueries

Message Explanation

Run subquery N (at nesting level N). This message appears at the point in the
query where the subquery actually runs.
Subqueries are numbered in order for
each side of a union.

NESTING LEVEL N SUBQUERIES FOR STATEMENT N. Shows the nesting level of the subquery.

QUERY PLAN FOR SUBQUERY N (at nesting level N and at line N).

END OF QUERY PLAN FOR SUBQUERY N.

These lines bracket showplan output for
each subquery in a statement. Variables
show the subquery number, the nesting
level, and the input line.

Correlated Subquery. The subquery is correlated.

Non-correlated Subquery. The subquery is not correlated.

showplan messages for subqueries

814

For information about how Adaptive Server optimizes certain types of
subqueries by materializing results or by flattening the queries to joins, see
“Subquery optimization” on page 499.

For basic information on subqueries, subquery types, and the meaning of
the subquery predicates, see the Transact-SQL User’s Guide.

Output for flattened or materialized subqueries
Certain forms of subqueries can be processed more efficiently when:

• The query is flattened into a join query, or

• The subquery result set is materialized as a first step, and the results
are used in a second step with the rest of the outer query.

When the optimizer chooses one of these strategies, the query is not
processed as a subquery, so you will not see the subquery message
delimiters. The following sections describe showplan output for flattened
and materialized queries.

Subquery under an IN predicate. The subquery is introduced by in.

Subquery under an ANY predicate. The subquery is introduced by any.

Subquery under an ALL predicate. The subquery is introduced by all.

Subquery under an EXISTS predicate. The subquery is introduced by exists.

Subquery under an EXPRESSION predicate. The subquery is introduced by an
expression, or the subquery is in the
select list.

Evaluate Grouped ANY AGGREGATE. Evaluate Grouped ONCE
AGGREGATE. Evaluate Grouped ONCE-UNIQUE AGGREGATE.

or

Evaluate Ungrouped ANY AGGREGATE.
Evaluate Ungrouped ONCE AGGREGATE.
Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

The subquery uses an internal aggregate.

EXISTS TABLE: nested iteration The query includes an exists, in, or any
clause, and the subquery is flattened into
a join.

Message Explanation

CHAPTER 35 Using set showplan

815

Flattened queries

Adaptive Server can use one of several methods to flatten subqueries into
joins.

These methods are described in “Flattening in, any, and exists subqueries”
on page 145.

Subqueries executed as existence joins

When subqueries are flattened into existence joins, the output looks like
normal showplan output for a join, with the possible exception of the
message “EXISTS TABLE: nested iteration.”

This message indicates that instead of the normal join processing, which
looks for every row in the table that matches the join column, Adaptive
Server uses an existence join and returns TRUE as soon as the first
qualifying row is located.

For more information on subquery flattening, see “Flattened subqueries
executed as existence joins” on page 148.

Adaptive Server flattens the following subquery into an existence join:

select title
from titles
where title_id in
 (select title_id
 from titleauthor)
and title like "A Tutorial%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

showplan messages for subqueries

816

 FROM TABLE
 titleauthor
 EXISTS TABLE : nested iteration.
 Index : ta_ix
 Forward scan.
 Positioning by key.
 Index contains all needed columns. Base table will not be read.
 Keys are:
 title_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.

Subqueries using unique reformatting

If there is not a unique index on publishers.pub_id, this query is flattened
by selecting the rows from publishers into a worktable and then creating a
unique clustered index. This process is called unique reformatting:

select title_id
from titles
where pub_id in
(select pub_id from publishers where state = "TX")

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for REFORMATTING.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 Worktable1.
 Nested iteration.

CHAPTER 35 Using set showplan

817

 Using Clustered Index.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

For more information, see “Flattened subqueries executed using unique
reformatting” on page 503.

Subqueries using duplicate elimination

This query performs a regular join, selecting all of the rows into a
worktable. In the second step, the worktable is sorted to remove
duplicates. This process is called duplicate elimination:

select title_id, au_id, au_ord
from titleauthor ta
where title_id in (select ta.title_id
 from titles t, salesdetail sd
 where t.title_id = sd.title_id
 and ta.title_id = t.title_id
 and type = ’travel’ and qty > 10)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is INSERT.
 The update mode is direct.
 Worktable1 created for DISTINCT.

 FROM TABLE
 salesdetail
 sd
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

showplan messages for subqueries

818

 FROM TABLE
 titles
 t
 Nested iteration.
 Using Clustered Index.
 Index : title_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 titleauthor
 ta
 Nested iteration.
 Index : ta_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title_id ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.
 This step involves sorting.

 FROM TABLE
 Worktable1.
 Using GETSORTED
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

CHAPTER 35 Using set showplan

819

Materialized queries

When Adaptive Server materializes subqueries, the query is executed in
two steps:

1 The first step stores the results of the subquery in an internal variable
or worktable.

2 The second step uses the internal variable or worktable results in the
outer query.

This query materializes the subquery into a worktable:

select type, title_id
from titles
where total_sales in (select max(total_sales)
 from sales_summary
 group by type)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT (into Worktable1).
 GROUP BY
 Evaluate Grouped MAXIMUM AGGREGATE.

 FROM TABLE
 sales_summary
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 TO TABLE
 Worktable1.

 STEP 2
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

showplan messages for subqueries

820

 FROM TABLE
 Worktable1.
 EXISTS TABLE : nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With MRU Buffer Replacement Strategy for data pages.

The showplan message “EXISTS TABLE: nested iteration,” near the end
of the output, shows that Adaptive Server performs an existence join.

Structure of subquery showplan output
When a query contains subqueries that are not flattened or materialized:

• The showplan output for the outer query appears first. It includes the
message “Run subquery N (at nesting level N)”, indicating the point
in the query processing where the subquery executes.

• For each nesting level, the query plans at that nesting level are
introduced by the message “NESTING LEVEL N SUBQUERIES
FOR STATEMENT N.”

• The plan for each subquery is introduced by the message “QUERY
PLAN FOR SUBQUERY N (at nesting level N and at line N)”, and
the end of its plan is marked by the message “END OF QUERY
PLAN FOR SUBQUERY N.” This section of the output includes
information showing:

• The type of query (correlated or uncorrelated)

• The predicate type (IN, ANY, ALL, EXISTS, or EXPRESSION)

Subquery execution message
Run subquery N (at nesting level N).

This message shows the place where the subquery execution takes place
in the execution of the outer query. Adaptive Server executes the subquery
at the point in the outer query where it need to be run least often.

The plan for this subquery appears later in the output for the subquery’s
nesting level. The first variable in this message is the subquery number;
the second variable is the subquery nesting level.

CHAPTER 35 Using set showplan

821

Nesting level delimiter message
NESTING LEVEL N SUBQUERIES FOR STATEMENT N.

This message introduces the showplan output for all the subqueries at a
given nesting level. The maximum nesting level is 16.

Subquery plan start delimiter
QUERY PLAN FOR SUBQUERY N (at nesting level N and at line N).

This statement introduces the showplan output for a particular subquery at
the nesting level indicated by the previous NESTING LEVEL message.

Line numbers to help you match showplan output to your input.

Subquery plan end delimiter
END OF QUERY PLAN FOR SUBQUERY N.

This statement marks the end of the query plan for a particular subquery.

Type of subquery
Correlated Subquery.

Non-correlated Subquery.

A subquery is either correlated or non correlated.

• A correlated subquery references a column in a table that is listed in
the from list of the outer query. If the subquery is correlated, showplan
includes the message “Correlated Subquery.”

• A non correlated subquery can be evaluated independently of the
outer query. Non correlated subqueries are sometimes materialized,
so their showplan output does not include the normal subquery
showplan messages.

Subquery predicates
Subquery under an IN predicate.

showplan messages for subqueries

822

Subquery under an ANY predicate.

Subquery under an ALL predicate.

Subquery under an EXISTS predicate.

Subquery under an EXPRESSION predicate.

Subqueries introduced by in, any, all, or exists are quantified predicate
subqueries. Subqueries introduced by >, >=, <, <=, =, != are expression
subqueries.

Internal subquery aggregates
Certain types of subqueries require special internal aggregates, as listed in
Table 35-4. Adaptive Server generates these aggregates internally – they
are not part of Transact-SQL syntax and cannot be included in user
queries.

Table 35-4: Internal subquery aggregates

Messages for internal aggregates include “Grouped” when the subquery
includes a group by clause and computes the aggregate for a group of rows,
otherwise the messages include “Ungrouped”; the subquery the aggregate
for all rows in the table that satisfy the correlation clause.

Quantified predicate subqueries and the ANY aggregate
Evaluate Grouped ANY AGGREGATE.

Evaluate Ungrouped ANY AGGREGATE.

Subquery type Aggregate Effect

Quantified
predicate

ANY Returns TRUE or FALSE to the
outer query.

Expression ONCE Returns the result of the
subquery. Raises error 512 if the
subquery returns more than one
value.

Subquery
containing distinct

ONCE-UNIQUE Stores the first subquery result
internally and compares each
subsequent result to the first.
Raises error 512 if a subsequent
result differs from the first.

CHAPTER 35 Using set showplan

823

All quantified predicate subqueries that are not flattened use the internal
ANY aggregate. Do not confuse this with the any predicate that is part of
SQL syntax.

The subquery returns TRUE when a row from the subquery satisfies the
conditions of the subquery predicate. It returns FALSE to indicate that no
row from the subquery matches the conditions.

For example:

select type, title_id
from titles
where price > all
 (select price
 from titles
 where advance < 15000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

 Correlated Subquery.
 Subquery under an ALL predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 titles
 EXISTS TABLE : nested iteration.
 Table Scan.

showplan messages for subqueries

824

 Forward scan.
 Positioning at start of table.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 END OF QUERY PLAN FOR SUBQUERY 1.

Expression subqueries and the ONCE aggregate
Evaluate Ungrouped ONCE AGGREGATE.

Evaluate Grouped ONCE AGGREGATE.

Expression subqueries return only a single value. The internal ONCE
aggregate checks for the single result required by an expression subquery.

This query returns one row for each title that matches the like condition:

select title_id, (select city + " " + state
 from publishers
 where pub_id = t.pub_id)
from titles t
where title like "Computer%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 titles
 t
 Nested iteration.
 Index : title_ix
 Forward scan.
 Positioning by key.
 Keys are:
 title ASC

 Run subquery 1 (at nesting level 1).
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 1).

CHAPTER 35 Using set showplan

825

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ONCE AGGREGATE.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 END OF QUERY PLAN FOR SUBQUERY 1.

Subqueries with distinct and the ONCE-UNIQUE aggregate
Evaluate Grouped ONCE-UNIQUE AGGREGATE.

Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

When the subquery includes distinct, the ONCE-UNIQUE aggregate
indicates that duplicates are being eliminated:

select pub_name from publishers
where pub_id =
(select distinct titles.pub_id from titles
 where publishers.pub_id = titles.pub_id
 and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 publishers
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).

showplan messages for subqueries

826

 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3).

 Correlated Subquery.
 Subquery under an EXPRESSION predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

 FROM TABLE
 titles
 Nested iteration.
 Index : pub_id_ix
 Forward scan.
 Positioning by key.
 Keys are:
 pub_id ASC
 Using I/O Size 16 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 END OF QUERY PLAN FOR SUBQUERY 1.

Existence join message
EXISTS TABLE: nested iteration

This message indicates a special form of nested iteration. In a regular
nested iteration, the entire table or its index is searched for qualifying
values.

In an existence test, the query can stop the search as soon as it finds the
first matching value.

The types of subqueries that can produce this message are:

• Subqueries that are flattened to existence joins

• Subqueries that perform existence tests

CHAPTER 35 Using set showplan

827

Subqueries that perform existence tests

There are several ways you can write queries that perform an existence
test, for example, using exists, in, or =any. These queries are treated as if
they were written with an exists clause. The following example shows an
existence test. This query cannot be flattened because the outer query
contains or:

select au_lname, au_fname
from authors
where exists
 (select *
 from publishers
 where authors.city = publishers.city)
or city = "New York"

QUERY PLAN FOR STATEMENT 1 (at line 1).

 STEP 1
 The type of query is SELECT.

 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.

 Run subquery 1 (at nesting level 1).
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

 QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

 Correlated Subquery.
 Subquery under an EXISTS predicate.

 STEP 1
 The type of query is SELECT.
 Evaluate Ungrouped ANY AGGREGATE.

 FROM TABLE
 publishers
 EXISTS TABLE : nested iteration.
 Table Scan.

showplan messages for subqueries

828

 Forward scan.
 Positioning at start of table.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

END OF QUERY PLAN FOR SUBQUERY 1.

829

C H A P T E R 3 6 Statistics Tables and Displaying
Statistics with optdiag

This chapter explains how statistics are stored and displayed.

Regardless of how you gather statistics, they are maintained only for the
first 255 bytes of data. If you use wide columns, any information after the
first 255 bytes is considered statistically insignificant by the optimizer.
The data contained in the first 255 bytes may not accurately represent the
data that occurs after this, causing the optimizer to make its evaluation
according to skewed statistics.

For more information on managing statistics, see Chapter 33, “Using
Statistics to Improve Performance.”

System tables that store statistics
The systabstats and sysstatistics tables store statistics for all tables,
indexes, and any unindexed columns for which you have explicitly
created statistics. In general terms:

• systabstats stores information about the table or index as an object,
that is, the size, number of rows, and so forth.

It is updated by query processing, data definition language, and
update statistics commands.

• sysstatistics stores information about the values in a specific column.

Topic Page
System tables that store statistics 829

Viewing statistics with the optdiag utility 831

Changing statistics with optdiag 851

Using simulated statistics 856

Character data containing quotation marks 862

Effects of SQL commands on statistics 862

System tables that store statistics

830

It is updated by data definition language and update statistics
commands.

For more information, see “Effects of SQL commands on statistics” on
page 862.

systabstats table
The systabstats table contains basic statistics for tables and indexes, for
example:

• Number of data pages for a table, or the number of leaf level pages for
an index

• Number of rows in the table

• Height of the index

• Average length of data rows and leaf rows

• Number of forwarded and deleted rows

• Number of empty pages

• Statistics to increase the accuracy of I/O cost estimates, including
cluster ratios, the number of pages that share an extent with an
allocation page, and the number of OAM and allocation pages used
for the object

• Stopping points for the reorg command so that it can resume
processing

systabstats stores one row for each table and nonclustered index in the
database. The storage for clustered index information depends on the
locking scheme for the table:

• If the table is a data-only-locked table, systabstats stores an additional
row for a clustered index.

• If the table is an allpages-locked table, the data pages are treated as
the leaf level of the index, so the systabstats entry for a clustered index
is stored in the same row as the table data.

The indid column for clustered indexes on allpages-locked tables is
always 1.

See the Adaptive Server Reference Manual for more information.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

831

sysstatistics table
The sysstatistics table stores one or more rows for each indexed column on
a user table. In addition, it can store statistics for unindexed columns.

The first row for each column stores basic statistics about the column, such
as the density for joins and search arguments, the selectivity for some
operators, and the number of steps stored in the histogram for the column.
If the index has multiple columns, or if you specify multiple columns
when you generate statistics for unindexed columns, there is a row for
each prefix subset of columns.

For more information on prefix subsets, see “Column statistics” on page
840.

Additional rows store histogram data for the leading column. Histograms
do not exist if indexes were created before any data was inserted into a
table (run update statistics after inserting data to generate the histogram).

See “Histogram displays” on page 845 for more information.

See the Adaptive Server Reference Manual for more information.

Viewing statistics with the optdiag utility
The optdiag utility displays statistics from the systabstats and sysstatistics
tables. optdiag can also be used to update sysstatistics information. Only a
System Administrator can run optdiag.

Regardless of how you gather statistics, they are maintained only for the
first 255 bytes of data. If you use wide columns, any information after the
first 255 bytes is considered statistically insignificant by the optimizer.
The data contained in the first 255 bytes may not accurately represent the
data that occurs after this, causing the optimizer to make its evaluation
according to skewed statistics.

optdiag syntax
The syntax for optdiag is:

optdiag [binary] [simulate] statistics
 {-i input_file |
 database[.owner[.[table[.column]]]]

Viewing statistics with the optdiag utility

832

 [-o output_file]}
 [-U username] [-P password]
 [-I interfaces_file]
 [-S server]
 [-v] [-h] [-s] [-Tflag_value]
 [-z language] [-J client_charset]
 [-a display_charset]

You can use optdiag to display statistics for an entire database, for a single
table and its indexes and columns, or for a particular column.

To display statistics for all user tables in the pubtune database, placing the
output in the pubtune.opt file, use the following command:

optdiag statistics pubtune -Usa -Ppasswd
-o pubtune.opt

This command displays statistics for the titles table and for any indexes on
the table:

optdiag statistics pubtune..titles -Usa -Ppasswd
 -o titles.opt

See Utility Programs Manual for your platform for more information on
the optdiag command. The following sections provide information about
the output from optdiag.

optdiag header information
After printing the version information for optdiag and Adaptive Server,
optdiag prints the server name and summarizes the arguments used to
display the statistics.

The header of the optdiag report lists the objects described in the report:

Server name: "test_server"

Specified database: "pubtune"
Specified table owner: not specified
Specified table: "titles"
Specified column: not specified

Table 36-1 describes the output.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

833

Table 36-1: Table and column information

Table statistics
This optdiag section reports basic statistics for the table.

Sample output for table statistics
Table owner: "dbo"

Statistics for table: "titles"

 Data page count: 662
 Empty data page count: 10
 Data row count: 4986.0000000000000000
 Forwarded row count: 18.0000000000000000
 Deleted row count: 87.0000000000000000
 Data page CR count: 86.0000000000000000
 OAM + allocation page count: 5
 First extent data pages: 3
 Data row size: 238.8634175691937287

 Derived statistics:
 Data page cluster ratio: 0.9896907216494846

Table 36-2: Table statistics

Row Label Information Provided

Server name The name of the server, as stored in the
@@servername variable. You must use
sp_addserver, and restart the server for the server
name to be available in the variable.

Specified database Database name given on the optdiag command line.

Specified table owner Table owner given on the optdiag command line.

Specified table Table name given on the optdiag command line.

Specified column Column name given on the optdiag command line.

Row label Information provided

Table owner Name of the table owner. You can omit owner names on the
command line by specifying dbname..tablename. If multiple tables
have the same name, and different owners, optdiag prints
information for each table with that name.

Statistics for table Name of the table.

Data page count Number of data pages in the table.

Viewing statistics with the optdiag utility

834

Data page CR count

The “Data Page CR count” is used to compute the data page cluster ratio,
which can help determine the effectiveness of large I/O for table scans and
range scans. This value is updated only when you run update statistics.

Table-level derived statistics

The “Derived statistics” in the table-level section reports the statistics
derived from the “Data Page CR count” and data page count. Table 36-3
describes the output.

Empty data page count Count of pages that have deleted rows only.

Data row count Number of data rows in the table.

Forwarded row count Number of forwarded rows in the table. This value is always 0 for an
allpages-locked table.

Deleted row count Number of rows that have been deleted from the table. These are
committed deletes where the space has not been reclaimed by one of
the functions that clears deleted rows.

This value is always 0 for an allpages-locked table.

Data page CR count A counter used to derive the data page cluster ratio.

See “Data page CR count” on page 834.

OAM + allocation page count Number of OAM pages for the table, plus the number of allocation
units in which the table occupies space. These statistics are used to
estimate the cost of OAM scans on data-only-locked tables.

The value is maintained only on data-only-locked tables.

First extent data pages Number of pages that share the first extent in an allocation unit with
the allocation page. These pages need to be read using 2K I/O, rather
than large I/O.

This information is maintained only for data-only-locked tables.

Data row size Average length of a data row, in bytes. The size includes row
overhead.

This value is updated only by update statistics, create index, and alter
table...lock.

Index height Height of the index, not counting the leaf level. This row is included
in the table-level output only for clustered indexes on allpages-
locked tables. For all other indexes, the index height appears in the
index-level output.

This value does not apply to heap tables.

Row label Information provided

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

835

Table 36-3: Cluster ratio for a table

Data page cluster ratio

For allpages-locked tables, the data page cluster ratio measures how well
the pages are sequenced on extents, when the table is read in page-chain
order. A cluster ratio of 1.0 indicates perfect sequencing. A lower cluster
ratio indicates that the page chain is fragmented.

For data-only-locked tables, the data page cluster ratio measures how well
the pages are packed on the extents. A cluster ratio of 1.0 indicates
complete packing of extents. A low data page cluster ratio indicates that
extents allocated to the table contain empty pages.

For an example of how the data page cluster ratio is used, see “How cluster
ratios affect large I/O estimates” on page 439.

Space utilization

Space utilization uses the average row size and number of rows to compute
the expected minimum number of data pages, and compares it to the
current number of pages. If space utilization is low, running reorg rebuild
on the table or dropping and re-creating the clustered index can reduce the
amount of empty space on data pages, and the number of empty pages in
extents allocated to the table.

If you are using space management properties such as fillfactor or
reservepagegap, the empty space that is left for additional rows on data
pages of a table with a clustered index and the number of empty pages left
in extents for the table affects the space utilization value.

Row label Information provided

Data page cluster ratio The data page cluster ratio is used to estimate the
effectiveness of large I/O.

It is used to estimate the number of I/Os required
to read an allpages-locked table by following the
page chain, and to estimate the number of large
I/Os required to scan a data-only-locked table
using an OAM scan.

Space utilization The ratio of the minimum space usage for this
table, and the current space usage.

Large I/O efficiency Estimates the number of useful pages brought in
by each large I/O.

Viewing statistics with the optdiag utility

836

If statistics have not been updated recently and the average row size has
changed or the number of rows and pages are inaccurate, space utilization
may report values greater than 1.0.

Large I/O efficiency

Large I/O efficiency estimates the number of useful pages brought in by
each large I/O. For examples, if the value is.5, a 16K I/O returns, on
average, 4 2K pages needed for the query, and 4 other pages, either empty
pages or pages that share the extent due to lack of clustering. Low values
are an indication that re-creating the clustered index or running reorg
rebuild on the table could improve I/O performance.

Index statistics
This optdiag section is printed for each nonclustered index and for a
clustered index on a data-only-locked table. Information for clustered
indexes on allpages-locked tables is reported as part of the table statistics.
Table 36-4 describes the output.

Sample output for index statistics
Statistics for index: "title_id_ix" (nonclustered)
Index column list: "title_id"
 Leaf count: 45
 Empty leaf page count: 0
 Data page CR count: 4952.0000000000000000
 Index page CR count: 6.0000000000000000
 Data row CR count: 4989.0000000000000000
 First extent leaf pages: 0
 Leaf row size: 17.8905999999999992
 Index height: 1

 Derived statistics:
 Data page cluster ratio: 0.0075819672131148
 Index page cluster ratio: 1.0000000000000000
 Data row cluster ratio: 0.0026634382566586

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

837

Table 36-4: Index statistics

Index-level derived statistics

The derived statistics in the index-level section are based on the “CR
count” values shown in “Index statistics” on page 836.

Row label Information provided

Statistics for index Index name and type.

Index column list List of columns in the index.

Leaf count Number of leaf-level pages in the index.

Empty leaf page
count

Number of empty leaf pages in the index.

Data page CR count A counter used to compute the data page
cluster r.atio for accessing a table using the
index.

See “Index-level derived statistics” on page
837.

Index page CR count A counter used to compute the index page
cluster ratio.

See “Index-level derived statistics” on page
837.

Data row CR count A counter used to compute the data row cluster
ratio

See “Index-level derived statistics” on page
837.

First extent leaf pages The number of leaf pages in the index stored in
the first extent in an allocation unit. These
pages need to be read using 2K I/O, rather than
large I/O.

This information is maintained only for
indexes on data-only-locked tables.

Leaf row size Average size of a leaf-level row in the index.
This value is only updated by update statistics,
create index, and alter table...lock.

Index height Index height, not including the leaf level.

Viewing statistics with the optdiag utility

838

Table 36-5: Cluster ratios for a nonclustered index

Data page cluster ratio

The data page cluster ratio is used to compute the effectiveness of large I/O
when this index is used to access the data pages. If the table is perfectly
clustered with respect to the index, the cluster ratio is 1.0. Data page
cluster ratios can vary widely. They are often high for some indexes, and
very low for others.

See “How cluster ratios affect large I/O estimates” on page 439 for more
information.

Index page cluster ratio

The index page cluster ratio is used to estimate the cost of large I/O for
queries that need to read a large number of leaf-level pages from
nonclustered indexes or clustered indexes on data-only-locked tables.
Some examples of such queries are covered index scans and range queries
that read a large number of rows.

Row label Information provided

Data page cluster ratio The fraction of row accesses that do not require an
additional extent I/O because of storage fragmentation,
while accessing rows in order by this index using large
I/O.

It is a measure of the sequencing of data pages on
extents.

Index page cluster
ratio

The fraction of index leaf page accesses via the page
chain that do not require extra extent I/O.

It is a measure of the sequencing of index pages on
extents.

Data row cluster ratio The fraction of data page accesses that do not require an
extra I/O when accessing data rows in order by this
index.

It is a measure of the sequencing of rows on data pages.

Space utilization The ratio of the minimum space usage for the leaf level
of this index, and the current space usage.

Large I/O efficiency Estimates the number of useful pages brought in by
each large I/O.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

839

On newly created indexes, the “Index page cluster ratio” is 1.0, or very
close to 1.0, indicating optimal clustering of index leaf pages on extents.
As index pages are split and new pages are allocated from additional
extents, the ratio drops. A very low percentage could indicate that
dropping and re-creating the index or running reorg rebuild on the index
would improve performance, especially if many queries perform covered
scans.

See “How cluster ratios affect large I/O estimates” on page 439 for more
information.

Data row cluster ratio

The data row cluster ratio is used to estimate the number of pages that need
to be read while using this index to access the data pages. This ratio may
be very high for some indexes, and quite low for others.

Space utilization for an index

Space utilization uses the average row size and number of rows to compute
the expected minimum size of leaf-level index pages and compares it to
the current number of leaf pages.

If space utilization is low, running reorg rebuild on index or dropping and
re-creating the index can reduce the amount of empty space on index
pages, and the number of empty pages in extents allocated to the index.

If you are using space management properties such as fillfactor or
reservepagegap, the empty space that is left for additional rows on leaf
pages, and the number of empty pages left in extents for the index affects
space utilization.

If statistics have not been updated recently and the average row size has
changed or the number of rows and pages are inaccurate, space utilization
may report values greater than 1.0.

Large I/O efficiency for an index

Large I/O efficiency estimates the number of useful pages brought in by
each large I/O. For examples, if the value is.5, a 16K I/O returns, on
average, 4 2K pages needed for the query, and 4 other pages, either empty
pages or pages that share the extent due to lack of clustering.

Viewing statistics with the optdiag utility

840

Low values are an indication that re-creating indexes or running reorg
rebuild could improve I/O performance.

Column statistics
optdiag column-level statistics include:

• Statistics giving the density and selectivity of columns. If an index
includes more than one column, optdiag prints the information
described in Table 36-6 for each prefix subset of the index keys. If
statistics are created using update statistics with a column name list,
density statistics are stored for each prefix subset in the column list.

• A histogram, if the table contains one or more rows of data at the time
the index is created or update statistics is run. There is a histogram for
the leading column for:

• Each index that currently exists (if there was at least one non-null
value in the column when the index was created)

• Any indexes that have been created and dropped (as long as
delete statistics has not been run)

• Any column list on which update statistics has been run

There is also a histogram for:

• Every column in an index, if the update index statistics command
was used

• Every column in the table, if the update all statistics command
was used

optdiag also prints a list of the columns in the table for which there are no
statistics. For example, here is a list of the columns in the authors table that
do not have statistics:

No statistics for column(s): "address"
(default values used) "au_fname"
 "phone"
 "state"
 "zipcode"

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

841

Sample output for column statistics

The following sample shows the statistics for the city column in the authors
table:

Statistics for column: "city"
Last update of column statistics: Jul 20 1998 6:05:26:656PM

 Range cell density: 0.0007283200000000
 Total density: 0.0007283200000000
 Range selectivity: default used (0.33)
 In between selectivity: default used (0.25)

Viewing statistics with the optdiag utility

842

Table 36-6: Column statistics

Range cell and total density values

Row label Information provided

Statistics for column Name of the column; if this block of information
provides information about a prefix subset in a
compound index or column list, the row label is
“Statistics for column group.”

Last update of column
statistics

Date the index was created, date that update
statistics was last run, or date that optdiag was last
used to change statistics.

Statistics originated from
upgrade of distribution page

Statistics resulted from an upgrade of a pre-11.9
distribution page. This message is not printed if
update statistics has been run on the table or
index or if the index has been dropped and re-
created after an upgrade.

If this message appears in optdiag output, running
update statistics is recommended.

Statistics loaded from
Optdiag

optdiag was used to change sysstatistics
information. create index commands print
warning messages indicating that edited statistics
are being overwritten.

This row is not displayed if the statistics were
generated by update statistics or create index.

Range cell density Density for equality search arguments on the
column.

See “Range cell and total density values” on
page 842.

Total density Join density for the column. This value is used to
estimate the number of rows that will be returned
for a join on this column.

See “Range cell and total density values” on
page 842.

Range selectivity Prints the default value of .33, unless the value
has been updated using optdiag input mode.

This is the value used for range queries if the
search argument is not known at optimize time.

In between selectivity Prints the default value of .25, unless the value
has been updated using optdiag input mode.

This is the value used for range queries if the
search argument is not known at optimize time.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

843

Adaptive Server stores two values for the density of column values:

• The “Range cell density” measures the duplicate values only for range
cells.

If there are any frequency cells for the column, they are eliminated
from the computation for the range-cell density.

If there are only frequency cells for the column, and no range cells,
the range-cell density is 0.

See “Understanding histogram output” on page 846 for information
on range and frequency cells.

• The “Total density” measures the duplicate values for all columns,
those represented by both range cells and frequency cells.

Using two separate values improves the optimizer’s estimates of the
number of rows to be returned:

• If a search argument matches the value of a frequency cell, the
fraction of rows represented by the weight of the frequency cell will
be returned.

• If a search argument falls within a range cell, the range-cell density
and the weight of the range cell are used to estimate the number of
rows to be returned.

For joins, the optimizer bases its estimates on the average number of rows
to be returned for each scan of the table, so the total density, which
measures the average number of duplicates for all values in the column,
provides the best estimate. The total density is also used for equality
arguments when the value of the search argument is not known when the
query is optimized.

See “Range and in-between selectivity values” on page 844 for more
information.

For indexes on multiple columns, the range-cell density and total density
are stored for each prefix subset. In the sample output below for an index
on titles (pub_id, type, pubdate), the density values decrease with each
additional column considered.

Statistics for column: "pub_id"
Last update of column statistics: Feb 4 1998 12:58PM

 Range cell density: 0.0335391029690461
 Total density: 0.0335470400000000

Viewing statistics with the optdiag utility

844

Statistics for column group: "pub_id", "type"
Last update of column statistics: Feb 4 1998 12:58PM

 Range cell density: 0.0039044009265108
 Total density: 0.0039048000000000

Statistics for column group: "pub_id", "type", "pubdate"
Last update of column statistics: Feb 4 1998 12:58PM

 Range cell density: 0.0002011791956201
 Total density: 0.0002011200000000

With 5000 rows in the table, the increasing precision of the optimizer’s
estimates of rows to be returned depends on the number of search
arguments used in the query:

• An equality search argument on only pub_id results in the estimate
that 0.0335391029690461 * 5000 rows, or 168 rows, will be returned.

• Equality search arguments for all three columns result in the estimate
that 0.0002011791956201 * 5000 rows, or only 1 row will be
returned.

This increasing level of accuracy as more search arguments are evaluated
can greatly improve the optimization of many queries.

Range and in-between selectivity values

optdiag prints the default values for range and in-between selectivity, or the
values that have been set for these selectivities in an earlier optdiag
session. These values are used for range queries when search arguments
are not known when the query is optimized.

For equality search arguments whose value is not known, the total density
is used as the default.

Search arguments cannot be known at optimization time for:

• Stored procedures that set variables within a procedure

• Queries in batches that set variables for search arguments within a
batch

Table 17-2 on page 398 shows the default values that are used. These
approximations can result in suboptimal query plans because they either
overestimate or underestimate the number of rows to be returned by a
query.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

845

See “Updating selectivities with optdiag input mode” on page 853 for
information on using optdiag to supply selectivity values.

Histogram displays
Histograms store information about the distribution of values in a column.
Table 36-7 shows the commands that create and update histograms and
which columns are affected.

Table 36-7: Commands that create histograms

Sample output for histograms
Histogram for column: "city"
Column datatype: varchar(20)
Requested step count: 20
Actual step count: 20

optdiag first prints summary data about the histogram, as shown in Table
36-8.

Table 36-8: Histogram summary statistics

Histogram output is printed in columns, as described in Table 36-9.

Command Histogram for

create index Leading column only

update statistics

table_name or index_name Leading column only

column_list Leading column only

update index statistics All indexed columns

update all statistics All columns

Row label Information provided

Histogram for column Name of the column.

Column datatype Datatype of the column, including the length,
precision and scale, if appropriate for the datatype.

Requested step count Number of steps requested for the column.

Actual step count Number of steps generated for the column.

This number can be less than the requested number
of steps if the number of distinct values in the
column is smaller than the requested number of
steps.

Viewing statistics with the optdiag utility

846

Table 36-9: Columns in optdiag histogram output

No heading is printed for the Operator column.

Understanding histogram output

A histogram is a set of cells in which each cell has a weight. Each cell has
an upper bound and a lower bound, which are distinct values from the
column. The weight of the cell is a floating-point value between 0 and 1,
representing either:

• The fraction of rows in the table within the range of values, if the
operator is <=, or

• The number of values that match the step, if the operator is =.

The optimizer uses the combination of ranges, weights, and density values
to estimate the number of rows in the table that are to be returned for a
query clause on the column.

Adaptive Server uses equi-height histograms, where the number of rows
represented by each cell is approximately equal. For example, the
following histogram on the city column on pubtune..authors has 20 steps;
each step in the histogram represents about 5 percent of the table:

Step Weight Value

 1 0.00000000 <= "APO
Miamh\377\377\377\377\377\377\377"
 2 0.05460000 <= "Atlanta"
 3 0.05280000 <= "Boston"
 4 0.05400000 <= "Charlotte"
 5 0.05260000 <= "Crown"
 6 0.05260000 <= "Eddy"
 7 0.05260000 <= "Fort Dodge"
 8 0.05260000 <= "Groveton"

Column Information provided

Step Number of the step.

Weight Weight of the step.

(Operator) <, <=, or =, indicating the limit of the value.
Operators differ, depending on whether the cell
represents a range cell or a frequency call.

Value Upper boundary of the values represented by a
range cell or the value represented by a frequency
count.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

847

 9 0.05340000 <= "Hyattsville"
 10 0.05260000 <= "Kunkle"
 11 0.05260000 <= "Luthersburg"
 12 0.05340000 <= "Milwaukee"
 13 0.05260000 <= "Newbern"
 14 0.05260000 <= "Park Hill"
 15 0.05260000 <= "Quicksburg"
 16 0.05260000 <= "Saint David"
 17 0.05260000 <= "Solana Beach"
 18 0.05260000 <= "Thornwood"
 19 0.05260000 <= "Washington"
 20 0.04800000 <= "Zumbrota"

The first step in a histogram represents the proportion of null values in the
table. Since there are no null values for city, the weight is 0. The value for
the step that represents null values is represented by the highest value that
is less than the minimum column value.

For character strings, the value for the first cell is the highest possible
string value less than the minimum column value (“APO Miami” in this
example), padded to the defined column length with the highest character
in the character set used by the server. What you actually see in your output
depends on the character set, type of terminal, and software that you are
using to view optdiag output files.

In the preceding histogram, the value represented by each cell includes the
upper bound, but excludes the lower bound. The cells in this histogram are
called range cells, because each cell represents a range of values.

The range of values included in a range cell can be represented as follows:

lower_bound < (values for cell) <= upper bound

In optdiag output, the lower bound is the value of the previous step, and the
upper bound is the value of the current step.

For example, in the histogram above, step 4 includes Charlotte (the upper
bound), but excludes Boston (the lower bound). The weight for this step
is.0540, indicating that 5.4 percent of the table matches the query clause:

where city > Boston and city <= "Charlotte"

The operator column in the optdiag histogram output shows the <=
operator. Different operators are used for histograms with highly
duplicated values.

Viewing statistics with the optdiag utility

848

Histograms for columns with highly duplicated values

Histograms for columns with highly duplicated values look very different
from histograms for columns with a large number of discrete values. In
histograms for columns with highly duplicated values, a single cell, called
a frequency cell, represents the duplicated value.

The weight of the frequency cell shows the percentage of columns that
have matching values.

Histogram output for frequency cells varies, depending on whether the
column values represent one of the following:

• A dense frequency count, where values in the column are contiguous
in the domain. For example, 1, 2, 3 are contiguous integer values

• A sparse frequency count, where the domain of possible values
contains values not represented by the discrete set of values in the
table

• A mix of dense and sparse frequency counts.

Histogram output for some columns includes a mix of frequency cells and
range cells.

Histograms for dense frequency counts

The following output shows the histogram for a column that has 6 distinct
integer values, 1–6, and some null values:

Step Weight Value

 1 0.13043478 < 1
 2 0.04347826 = 1
 3 0.17391305 <= 2
 4 0.30434781 <= 3
 5 0.13043478 <= 4
 6 0.17391305 <= 5
 7 0.04347826 <= 6

The histogram above shows a dense frequency count, because all the
values for the column are contiguous integers.

The first cell represents null values. Since there are null values, the weight
for this cell represents the percentage of null values in the column.

The “Value” column for the first step displays the minimum column value
in the table and the < operator.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

849

Histograms for sparse frequency counts

In a histogram representing a column with a sparse frequency count, the
highly duplicated values are represented by a step showing the discrete
values with the = operator and the weight for the cell.

Preceding each step, there is a step with a weight of 0.0, the same value,
and the < operator, indicating that there are no rows in the table with
intervening values. For columns with null values, the first step will have a
nonzero weight if there are null values in the table.

The following histogram represents the type column of the titles table.
Since there are only 9 distinct types, they are represented by 18 steps.

Step Weight Value

 1 0.00000000 < "UNDECIDED "
 2 0.11500000 = "UNDECIDED "
 3 0.00000000 < "adventure "
 4 0.11000000 = "adventure "
 5 0.00000000 < "business "
 6 0.11040000 = "business "
 7 0.00000000 < "computer "
 8 0.11640000 = "computer "
 9 0.00000000 < "cooking "
 10 0.11080000 = "cooking "
 11 0.00000000 < "news "
 12 0.10660000 = "news "
 13 0.00000000 < "psychology "
 14 0.11180000 = "psychology "
 15 0.00000000 < "romance "
 16 0.10800000 = "romance "
 17 0.00000000 < "travel "
 18 0.11100000 = "travel "

For example, 10.66% of the values in the type column are “news,” so for
a table with 5000 rows, the optimizer estimates that 533 rows will be
returned.

Histograms for columns with sparse and dense values

For tables with some values that are highly duplicated, and others that
have distributed values, the histogram output shows a combination of
operators and a mix of frequency cells and range cells.

Viewing statistics with the optdiag utility

850

The column represented in the histogram below has a value of 30.0 for a
large percentage of rows, a value of 50.0 for a large percentage of rows,
and a value 100.0 for another large percentage of rows.

There are two steps in the histogram for each of these values: one step
representing the highly duplicated value has the = operator and a weight
showing the percentage of columns that match the value. The other step
for each highly duplicated value has the < operator and a weight of 0.0.
The datatype for this column is numeric(5,1).

Step Weight Value

 1 0.00000000 <= 0.9
 2 0.04456094 <= 20.0
 3 0.00000000 < 30.0
 4 0.29488859 = 30.0
 5 0.05996068 <= 37.0
 6 0.04292267 <= 49.0
 7 0.00000000 < 50.0
 8 0.19659241 = 50.0
 9 0.06028834 <= 75.0
 10 0.05570118 <= 95.0
 11 0.01572739 <= 99.0
 12 0.00000000 < 100.0
 13 0.22935779 = 100.0

Since the lowest value in the column is 1.0, the step for the null values is
represented by 0.9.

Choosing the number of steps for highly duplicated values

The histogram examples for frequency cells in this section use a relatively
small number of highly duplicated values, so the resulting histograms
require less than 20 steps, which is the default number of steps for create
index or update statistics.

If your table contains a large number of highly duplicated values for a
column, and the distribution of keys in the column is not uniform,
increasing the number of steps in the histogram can allow the optimizer to
produce more accurate cost estimates for queries with search arguments on
the column.

For columns with dense frequency counts, the number of steps should be
at least one greater than the number of values, to allow a step for the cell
representing null values.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

851

For columns with sparse frequency counts, use at least twice as many steps
as there are distinct values. This allows for the intervening cells with zero
weights, plus the cell to represent the null value. For example, if the titles
table in the pubtune database has 30 distinct prices, this update statistics
command creates a histogram with 60 steps:

update statistics titles
using 60 values

This create index command specifies 60 steps:

create index price_ix on titles(price)
with statistics using 60 values

If a column contains some values that match very few rows, these may still
be represented as range cells, and the resulting number of histogram steps
will be smaller than the requested number. For example, requesting 100
steps for a state column may generate some range cells for those states
represented by a small percentage of the number of rows.

Changing statistics with optdiag
A System Administrator can use optdiag to change column-level statistics.

 Warning! Using optdiag to alter statistics can improve the performance of
some queries. Remember, however, that optdiag overwrites existing
information in the system tables, which can affect all queries for a given
table.

Use extreme caution and test all changes thoroughly on all queries that use
the table. If possible, test the changes using optdiag simulate on a
development server before loading the statistics into a production server.

If you load statistics without simulate mode, be prepared to restore the
statistics, if necessary, either by using an untouched copy of optdiag output
or by rerunning update statistics.

Do not attempt to change any statistics by running an update, delete, or
insert command.

Changing statistics with optdiag

852

After you change statistics using optdiag, running create index or update
statistics overwrites the changes. The commands succeed, but print a
warning message. This message indicates that altered statistics for the
titles.type column have been overwritten:

WARNING: Edited statistics are overwritten. Table: ’titles’
(objectid 208003772), column: ’type’.

Using the optdiag binary mode
Because precision can be lost with floating point numbers, optdiag
provides a binary mode. The following command displays both human-
readable and binary statistics:

optdiag binary statistics pubtune..titles.price
 -Usa -Ppasswd -o price.opt

In binary mode, any statistics that can be edited with optdiag are printed
twice, once with binary values, and once with floating-point values. The
lines displaying the float values start with the optdiag comment character,
the pound sign (#).

This sample shows the first few rows of the histogram for the city column
in the authors table:

Step Weight Value

 1 0x3d2810ce <= 0x41504f204d69616d68ffffffffffffffffffffff
1 0.04103165 <= "APO Miamh\377\377\377\377\377\377\377\377"
 2 0x3d5748ba <= 0x41746c616e7461
2 0.05255959 <= "Atlanta"
 3 0x3d5748ba <= 0x426f79657273
3 0.05255959 <= "Boyers"
 4 0x3d58e27d <= 0x4368617474616e6f6f6761
4 0.05295037 <= "Chattanooga"

When optdiag loads this file, all uncommented lines are read, while all
characters following the pound sign are ignored. To edit the float values
instead of the binary values, remove the pound sign from the lines
displaying the float values, and insert the pound sign at the beginning of
the corresponding line displaying the binary value.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

853

When you must use binary mode

Two histogram steps in optdiag output can show the same value due to loss
of precision, even though the binary values differ. For example, both
1.999999999 and 2.000000000 may be displayed as 2.000000000 in
decimal, even though the binary values are 0x3fffffffffbb47d0 and
0x4000000000000000. In these cases, you should use binary mode for
input.

If you do not use binary mode, optdiag issues an error message indicating
that the step values are not increasing and telling you to use binary mode.
optdiag skips loading the histogram in which the error occurred, to avoid
losing precision in sysstatistics.

Updating selectivities with optdiag input mode
You can use optdiag to customize the server-wide default values for
selectivities to match the data for specific columns in your application.
The optimizer uses range and in-between selectivity values when the value
of a search argument is not known when a query is optimized.

The server-wide defaults are:

• Range selectivity – 0.33

• In-between selectivity – 0.25

You can use optdiag to provide values to be used to optimize queries on a
specific column. The following example shows how optdiag displays
default values:

Statistics for column: "city"
Last update of column statistics: Feb 4 1998 8:42PM

 Range cell density: 0x3f634d23b702f715
Range cell density: 0.0023561189228464
 Total density: 0x3f46fae98583763d
Total density: 0.0007012977830773
 Range selectivity: default used (0.33)
Range selectivity: default used (0.33)
 In between selectivity: default used (0.25)
In between selectivity: default used (0.25)

Changing statistics with optdiag

854

To edit these values, replace the entire “default used (0.33)” or “default
used (0.25)” string with a float value. The following example changes the
range selectivity to .25 and the in-between selectivity to .05, using
decimal values:

 Range selectivity: 0.250000000
 In between selectivity: 0.050000000

Editing histograms
You can edit histograms to:

• Remove a step, by transferring its weight to an adjacent line and
deleting the step

• Add a step or steps, by spreading the weight of a cell to additional
lines, with the upper bound for column values the step is to represent

Adding frequency count cells to a histogram

One common reason for editing histograms is to add frequency count cells
without greatly increasing the number of steps. The changes you will need
to make to histograms vary, depending on whether the values represent a
dense or sparse frequency count.

Editing a histogram with a dense frequency count

To add a frequency cell for a given column value, check the column value
just less than the value for the new cell. If the next-lesser value is as close
as possible to the value to be added, then the frequency count determined
simply.

If the next lesser column value to the step to be changed is as close as
possible to the frequency count value, then the frequency count cell can be
extracted simply.

For example, if a column contains at least one 19 and many 20s, and the
histogram uses a single cell to represent all the values greater than 17 and
less than or equal to 22, optdiag output shows the following information
for the cell:

Step Weight Value
...
4 0.100000000 <= 17
5 0.400000000 <= 22

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

855

...

Altering this histogram to place the value 20 on its own step requires
adding two steps, as shown here:

...
4 0.100000000 <= 17
5 0.050000000 <= 19
6 0.300000000 <= 20
7 0.050000000 <= 22
...

In the altered histogram above, step 5 represents all values greater than 17
and less than or equal to 19. The sum of the weights of steps 5, 6, and 7 in
the modified histogram equals the original weight value for step 5.

Editing a histogram with a sparse frequency count

If the column has no values greater than 17 and less than 20, the
representation for a sparse frequency count must be used instead. Here are
the original histogram steps:

Step Weight Value
...
4 0.100000000 <= 17
5 0.400000000 <= 22
...

The following example shows the zero-weight step, step 5, required for a
sparse frequency count:

...
4 0.100000000 <= 17
5 0.000000000 < 20
6 0.350000000 = 20
7 0.050000000 <= 22
...

The operator for step 5 must be <. Step 6 must specify the weight for the
value 20, and its operator must be =.

Skipping the load-time verification for step numbering

By default, optdiag input mode checks that the numbering of steps in a
histogram increases by 1. To skip this check after editing histogram steps,
use the command line flag -T4:

optdiag statistics pubtune..titles -Usa -Ppassword

Using simulated statistics

856

 -T4 -i titles.opt

Rules checked during histogram loading

During histogram input, the following rules are checked, and error
messages are printed if the rules are violated:

• The step numbers must increase monotonically, unless the -T4
command line flag is used.

• The column values for the steps must increase monotonically.

• The weight for each cell must be between 0.0 and 1.0.

• The total of weights for a column must be close to 1.0.

• The first cell represents null values and it must be present, even for
columns that do not allow null values. There must be only one cell
representing the null value.

• Two adjacent cells cannot both use the < operator.

Re-creating indexes without losing statistics updates

If you need to drop and re-create an index after you have updated a
histogram, and you want to keep the edited values, specify 0 for the
number of steps in the create index command. This command re-creates
the index without changing the histogram:

create index title_id_ix on titles(title_id)
with statistics using 0 values

Using simulated statistics
optdiag can generate statistics that can be used to simulate a user
environment without requiring a copy of the table data. This permits
analysis of query optimization using a very small database. For example,
simulated statistics can be used:

• For Technical Support replication of optimizer problems

• To perform “what if” analysis to plan configuration changes

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

857

In most cases, you will use simulated statistics to provide information to
Technical Support or to perform diagnostics on a development server.

See “Requirements for loading and using simulated statistics” on page
859 for information on setting up a separate database for using simulated
statistics.

You can also load simulated statistics into the database from which they
were copied. Simulated statistics are loaded into the system tables with
IDs that distinguish them from the actual table data. The set statistics
simulate on command instructs the server to optimize queries using the
simulated statistics, rather than the actual statistics.

optdiag syntax for simulated statistics
This command displays simulate-mode statistics for the pubtune database:

optdiag simulate statistics pubtune -o pubtune.sim

If you want binary simulated output, use:

optdiag binary simulate statistics pubtune -
o pubtune.sim

To load these statistics, use:

optdiag simulate statistics -i pubtune.sim

Simulated statistics output
Output for the simulate option to optdiag prints a row labeled “simulated”
for each row of statistics, except histograms. You can modify and load the
simulated values, while retaining the file as a record of the actual values.

• If binary mode is specified, there are three rows of output:

• A binary “simulated” row

• A decimal “simulated” row, commented out

• A decimal “actual” row, commented out

• If binary mode is not specified, there are two rows:

• A “simulated” row

• An “actual” row, commented out

Using simulated statistics

858

Here is a sample of the table-level statistics for the titles table in the
pubtune database:

Table owner: "dbo"
Table name: "titles"

Statistics for table: "titles"

 Data page count: 731.0000000000000000 (simulated)
Data page count: 731.0000000000000000 (actual)
 Empty data page count: 1.0000000000000000 (simulated)
Empty data page count: 1.0000000000000000 (actual)
 Data row count: 5000.0000000000000000 (simulated)
Data row count: 5000.0000000000000000 (actual)
 Forwarded row count: 0.0000000000000000 (simulated)
Forwarded row count: 0.0000000000000000 (actual)
 Deleted row count: 0.0000000000000000 (simulated)
Deleted row count: 0.0000000000000000 (actual)
 Data page CR count: 0.0000000000000000 (simulated)
Data page CR count: 0.0000000000000000 (actual)
 OAM + allocation page count: 6.0000000000000000 (simulated)
OAM + allocation page count: 6.0000000000000000 (actual)
 First extent data pages: 0.0000000000000000 (simulated)
First extent data pages: 0.0000000000000000 (actual)
 Data row size: 190.0000000000000000 (simulated)
Data row size: 190.0000000000000000 (actual)

In addition to table and index statistics, the simulate option to optdiag
copies out:

• Partitioning information for partitioned tables. If a table is partitioned,
these two lines appear at the end of the table statistics:

 Pages in largest partition: 390.0000000000000000 (simulated)
Pages in largest partition: 390.0000000000000000 (actual)

• Settings for the parallel processing configuration parameters:

Configuration Parameters:
 Number of worker processes: 20 (simulated)
Number of worker processes: 20 (actual)
 Max parallel degree: 10 (simulated)
Max parallel degree: 10 (actual)
 Max scan parallel degree: 3 (simulated)
Max scan parallel degree: 3 (actual)

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

859

• Cache configuration information for the default data cache and the
caches used by the specified database or the specified table and its
indexes. If tempdb is bound to a cache, that cache’s configuration is
also included. Here is sample output for the cache used by the pubtune
database:

Configuration for cache: "pubtune_cache"

 Size of 2K pool in Kb: 15360 (simulated)
Size of 2K pool in Kb: 15360 (actual)
 Size of 4K pool in Kb: 0 (simulated)
Size of 4K pool in Kb: 0 (actual)
 Size of 8K pool in Kb: 0 (simulated)
Size of 8K pool in Kb: 0 (actual)
 Size of 16K pool in Kb: 0 (simulated)
Size of 16K pool in Kb: 0 (actual)

If you want to test how queries use a 16K pool, you could alter the
simulated statistics values above to read:

Configuration for cache: "pubtune_cache"

 Size of 2K pool in Kb: 10240 (simulated)
Size of 2K pool in Kb: 15360 (actual)
 Size of 4K pool in Kb: 0 (simulated)
Size of 4K pool in Kb: 0 (actual)
 Size of 8K pool in Kb: 0 (simulated)
Size of 8K pool in Kb: 0 (actual)
 Size of 16K pool in Kb: 5120 (simulated)
Size of 16K pool in Kb: 0 (actual)

Requirements for loading and using simulated statistics
To use simulated statistics, you must issue the set statistics simulate on
command before running the query.

For more information, see “Running queries with simulated statistics” on
page 861.

To accurately simulate queries:

• Use the same locking scheme and partitioning for tables

Using simulated statistics

860

• Re-create any triggers that exist on the tables and use the same
referential integrity constraints

• Set any non default cache strategies and any non default concurrency
optimization values

• Bind databases and objects to the caches used in the environment you
are simulating

• Include any set options that affect query optimization (such as set
parallel_degree) in the batch you are testing

• Create any view used in the query

• Use cursors, if they are used for the query

• Use a stored procedure, if you are simulating a procedure execution

Simulated statistics can be loaded into the original database, or into a
database created solely for performing “what-if” analysis on queries.

Using simulated statistics in the original database

When the statistics are loaded into the original database, they are placed in
separate rows in the system tables, and do not overwrite existing non-
simulated statistics. The simulated statistics are only used for sessions
where the set statistics simulate command is in effect.

While simulated statistics are not used to optimize queries for other
sessions, executing any queries by using simulated statistics may result in
query plans that are not optimal for the actual tables and indexes, and
executing these queries may adversely affect other queries on the system.

Using simulated statistics in another database

When statistics are loaded into a database created solely for performing
“what-if” analysis on queries, the following steps must be performed first:

• The database named in the input file must exist; it can be as small as
2MB. Since the database name occurs only once in the input file, you
can change the database name, for example, from production to
test_db.

• All tables and indexes included in the input file must exist, but the
tables do not need to contain data.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

861

• All caches named in the input file must exist. They can be the smallest
possible cache size, 512K, with only a 2K pool. The simulated
statistics provide the information for pool configuration.

Dropping simulated statistics
Loading simulated statistics adds rows describing cache configuration to
the sysstatistics table in the master database. To remove these statistics, use
delete shared statistics. The command has no effect on the statistics in the
database where the simulated statistics were loaded.

If you have loaded simulated statistics into a database that contains real
table and index statistics, you can drop simulated statistics in one of these
ways:

• Use delete statistics on the table which deletes all statistics, and run
update statistics to re-create only the non simulated statistics.

• Use optdiag (without simulate mode) to copy statistics out; then run
delete statistics on the table, and use optdiag (without simulate mode)
to copy statistics in.

Running queries with simulated statistics
set statistics simulate on tells the optimizer to optimize queries using
simulated statistics:

set statistics simulate on

In most cases, you also want to use set showplan on or dbcc traceon(302).

If you have loaded simulated statistics into a production database, use set
noexec on when you run queries using simulated statistics so that the query
does not execute based on statistics that do not match the actual tables and
indexes. This lets you examine the output of showplan and dbcc
traceon(302) without affecting the performance of the production system.

showplan messages for simulated statistics

When set statistics simulate is enabled and there are simulated statistics
available, showplan prints the following message:

Optimized using simulated statistics.

Character data containing quotation marks

862

If the server on which the simulation tests are performed has the parallel
query options set to smaller values than the simulated values, showplan
output first displays the plan using the simulated statistics, and then an
adjusted query plan. If set noexec is turned on, the adjusted plan is not
displayed.

Character data containing quotation marks
In histograms for character and datetime columns, all column data is
contained in double quotes. If the column itself contains the double-quote
character, optdiag displays two quotation marks. If the column value is:

a quote "mark"

optdiag displays:

 "a quote" "mark"

The only other special character in optdiag output is the pound sign (#). In
input mode, all characters on the line following a pound sign are ignored,
except when the pound sign occurs within quotation marks as part of a
column name or column value.

Effects of SQL commands on statistics
The information stored in systabstats and sysstatistics is affected by data
definition language (DDL). Some data modification language also affects
systabstats. Table 36-10 summarizes how DDL affects the systabstats and
sysstatistics tables.

Table 36-10: Effects of DDL on systabstats and sysstatistics

Command Effect on systabstats Effect on sysstatistics

alter table...lock Changes values to reflect the changes to table
and index structure and size.

When changing from allpages locking to
data-only locking, the indid for clustered
indexes is set to 0 for the table, and a new row
is inserted for the index.

Same as create index, if changing
from allpages to data-only locking
or vice versa; no effect on changing
between data-only locking
schemes.

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

863

alter table to add, drop or
modify a column definition

If the change affects the length of the row so
that copying the table is required,

create table Adds a row for the table. If a constraint
creates an index, see the create index
commands below.

No effect, unless a constraint
creates an index. See the create
index commands below.

create clustered index For allpages-locked tables, changes indid to 1
and updates columns that are pertinent to the
index; for data-only-locked tables, adds a
new row.

Adds rows for columns not already
included; updates rows for columns
already included.

create nonclustered index Adds a row for the nonclustered index. Adds rows for columns not already
included; updates rows for columns
already included.

delete statistics No effect. Deletes all rows for a table or just
the rows for a specified column.

drop index Removes rows for nonclustered indexes and
for clustered indexes on data-only-locked
tables. For clustered indexes on allpages-
locked tables, sets the indid to 0 and updates
column values.

Does not delete actual statistics for
the indexed columns. This allows
the optimizer to continue to use this
information.

Deletes simulated statistics for
nonclustered indexes. For clustered
indexes on allpages-locked tables,
changes the value for the index ID
in the row that contains simulated
table data.

drop table Removes all rows for the table. Removes all rows for the table.

reorg Updates restart points, if used with a time
limit; updates number of pages and cluster
ratios if page counts change; affects other
values such as empty pages, forwarded or
deleted row counts, depending on the option
used.

The rebuild option recreates
indexes.

truncate table Resets values to reflect an empty table. Some
values, like row length, are retained.

No effect; this allows reloading a
truncated table without rerunning
update statistics.

update statistics

table_name Updates values for the table and for all
indexes on the specified table.

Updates histograms for the leading
column of each index on the table;
updates the densities for all indexes
and prefix subsets of indexes.

Command Effect on systabstats Effect on sysstatistics

Effects of SQL commands on statistics

864

alter table to add, drop or
modify a column definition

If the change affects the length of the row so
that copying the table is required,

create table Adds a row for the table. If a constraint
creates an index, see the create index
commands below.

No effect, unless a constraint
creates an index. See the create
index commands below.

create clustered index For allpages-locked tables, changes indid to 1
and updates columns that are pertinent to the
index; for data-only-locked tables, adds a
new row.

Adds rows for columns not already
included; updates rows for columns
already included.

create nonclustered index Adds a row for the nonclustered index. Adds rows for columns not already
included; updates rows for columns
already included.

delete statistics No effect. Deletes all rows for a table or just
the rows for a specified column.

drop index Removes rows for nonclustered indexes and
for clustered indexes on data-only-locked
tables. For clustered indexes on allpages-
locked tables, sets the indid to 0 and updates
column values.

Does not delete actual statistics for
the indexed columns. This allows
the optimizer to continue to use this
information.

Deletes simulated statistics for
nonclustered indexes. For clustered
indexes on allpages-locked tables,
changes the value for the index ID
in the row that contains simulated
table data.

drop table Removes all rows for the table. Removes all rows for the table.

reorg Updates restart points, if used with a time
limit; updates number of pages and cluster
ratios if page counts change; affects other
values such as empty pages, forwarded or
deleted row counts, depending on the option
used.

The rebuild option recreates
indexes.

truncate table Resets values to reflect an empty table. Some
values, like row length, are retained.

No effect; this allows reloading a
truncated table without rerunning
update statistics.

update statistics

table_name Updates values for the table and for all
indexes on the specified table.

Updates histograms for the leading
column of each index on the table;
updates the densities for all indexes
and prefix subsets of indexes.

Command Effect on systabstats Effect on sysstatistics

CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag

865

How query processing affects systabstats
Data modification can affect many of the values in the systabstats table.
To improve performance, these values are changed in memory and flushed
to systabstats periodically by the housekeeper task.

If you need to query systabstats directly, you can flush the in-memory
statistics to systabstats with sp_flushstats. This command flushes the
statistics for the titles table and any indexes on the table:

sp_flushstats titles

index_name Updates values for the specified index. Updates the histogram for the
leading column of the specified
index; updates the densities for the
prefix subsets of the index.

column_name(s) No effect. Updates or creates a histogram for a
column and updates or creates
densities for the prefix subsets of
the specified columns.

update index statistics

table_name Updates values for the table and for all
columns in all indexes on the specified table.

Updates histograms for all columns
of each index on the table; updates
the densities for all indexes and
prefix subsets of indexes.

index_name Updates values for the specified index Updates the histogram for all
column of the specified index;
updates the densities for the prefix
subsets of the index.

update all statistics

table_name Updates values for the table and for all
columns in the specified table.

Updates histograms for all columns
on the table; updates the densities
for all indexes and prefix subsets of
indexes.

Command Effect on systabstats Effect on sysstatistics

Effects of SQL commands on statistics

866

If you do not provide a table name, sp_flushstats flushes statistics for all
tables in the current database.

Note Some statistics, particularly cluster ratios, may be slightly inaccurate
because not all page allocations and deallocations are recorded during
changes made by data modification queries. Run update statistics or create
index to correct any inconsistencies.

867

C H A P T E R 3 7 Tuning with dbcc traceon

This chapter describes the output of the dbcc traceon(302, 310) diagnostic
tools. These tools can be used for debugging problems with query
optimization.

Tuning with dbcc traceon(302)
showplan tells you the final decisions that the optimizer makes about your
queries. dbcc traceon(302) can often help you understand why the
optimizer makes choices that seem incorrect. It can help you debug
queries and decide whether to use certain options, like specifying an index
or a join order for a particular query. It can also help you choose better
indexes for your tables.

When you turn on dbcc traceon(302), you eavesdrop on the optimizer as it
examines query clauses and applies statistics for tables, search arguments,
and join columns.

The output from this trace facility is more detailed than showplan and
statistics io output, but it provides information about why the optimizer
made certain query plan decisions.

The query cost statistics printed by dbcc traceon(302) can help to explain,
for example, why a table scan is chosen rather than an indexed access, why
index1 is chosen rather than index2, and so on.

Topic Page
Tuning with dbcc traceon(302) 867

Table information block 871

Base cost block 873

Clause block 873

Column block 876

Index selection block 881

Best access block 883

dbcc traceon(310) and final query plan costs 885

Tuning with dbcc traceon(302)

868

dbcc traceon(310)
dbcc traceon(310) output can be extremely lengthy and is hard to
understand without a thorough understanding of the optimizer. You often
need to have your showplan output available as well to understand the join
order, join type, and the join columns and indexes used.

The most relevant parts of dbcc traceon(310) output, however, are the per-
table total I/O estimates.

Invoking the dbcc trace facility
To start the dbcc traceon(302) trace facility, execute the following
command from an isql batch, followed by the query or stored procedure
that you want to examine:

dbcc traceon(3604, 302)

This is what the trace flags mean:

To turn off the output, use:

dbcc traceoff(3604, 302)

dbcc traceon(302) is often used in conjunction with dbcc traceon(310),
which provides more detail on the optimizer’s join order decisions and
final cost estimates. dbcc traceon(310) also prints a “Final plan” block at
the end of query optimization. To enable this trace option also, use:

dbcc traceon(3604, 302, 310)

To turn off the output, use:

dbcc traceoff(3604, 302, 310)

See “dbcc traceon(310) and final query plan costs” on page 885 for
information on dbcc traceon(310).

Trace flag Explanation

3604 Directs trace output to the client, rather than to the error log.

302 Prints trace information on index selection.

CHAPTER 37 Tuning with dbcc traceon

869

General tips for tuning with dbcc traceon(302)
To get helpful output from dbcc traceon(302), be sure that your tests cause
the optimizer to make the same decisions that it would make while
optimizing queries in your application.

• You must supply the same parameters and values to your stored
procedures or where clauses.

• If the application uses cursors, use cursors in your tuning work

• If you are using stored procedures, make sure that they are actually
being optimized during the trial by executing them with recompile.

Checking for join columns and search arguments
In most cases, Adaptive Server uses only one index per table in a query.
This means that the optimizer must often choose between indexes when
there are multiple where clauses supporting both search arguments and
join clauses. The optimizer first matches the search arguments to available
indexes and statistics and estimates the number of rows and pages that
qualify for each available index.

The most important item that you can verify using dbcc traceon(302) is that
the optimizer is evaluating all possible where clauses included in the
query.

If a SARG clause is not included in the output, then the optimizer has
determined it is not a valid search argument. If you believe your query
should benefit from the optimizer evaluating this clause, find out why the
clause was excluded, and correct it if possible.

Once all of the search arguments have been examined, each join
combination is analyzed. If the optimizer is not choosing a join order that
you expect, one of the first checks you should perform is to look for the
sections of dbcc traceon(302) output that show join order costing: there
should be two blocks of output for each join.

If there is only one output for a given join, it means that the optimizer
cannot consider using an index for the missing join order.

The most common reasons for clauses that cannot be optimized include:

• Use of functions, arithmetic, or concatenation on the column in a
SARG, or on one of the join columns

Tuning with dbcc traceon(302)

870

• Datatype mismatches between SARGs and columns or between two
columns in a join

• Numerics compared against constants that are larger than the
definition of the column in a SARG, or joins between columns of
different precision and scale

See “Search arguments and useful indexes” on page 392 for more
information on requirements for search arguments.

Determining how the optimizer estimates I/O costs
Identifying how the optimizer estimates I/O often leads to the root of the
problems and to solutions. You can to see when the optimizer uses actual
statistics and when it uses default values for your search arguments.

Structure of dbcc traceon(302) output
dbcc traceon(302) prints its output as the optimizer examines the clauses
for each table involved in a query. The optimizer first examines all search
clauses and determines the cost for each possible access method for the
search clauses for each table in the query. It then examines each join clause
and the cost of available indexes for the joins.

dbcc traceon(302) output prints each search and join analysis as a block of
output, delimited with a line of asterisks.

The search and join blocks each contain smaller blocks of information:

• A table information block, giving basic information on the table

• A block that shows the cost of a table scan

• A block that displays the clauses being analyzed

• A block for each index analyzed

• A block that shows the best index for the clauses in this section

For joins, each join order is represented by a separate block. For example,
for these joins on titles, titleauthor, and authors:

 where titles.title_id = titleauthor.title_id
 and authors.au_id = titleauthor.au_id

there is a block for each join, as follows:

CHAPTER 37 Tuning with dbcc traceon

871

• titles, titleauthor

• titleauthor, titles

• titleauthor, authors

• authors, titleauthor

Additional blocks and messages

Some queries generate additional blocks or messages in dbcc traceon(302)
output, as follows:

• Queries that contain an order by clause contain additional blocks for
displaying the analysis of indexes that can be used to avoid
performing a sort.

See “Sort avert messages” on page 875 for more information.

• Queries using transaction isolation level 0 (dirty reads) or updatable
cursors on allpages-locked tables, where unique indexes are required,
return a message like the following:

Considering unique index ’au_id_ix’, indid 2.

• Queries that specify an invalid prefetch size return a message like the
following:

Forced data prefetch size of 8K is not available.
The largest available prefetch size will be used.

Table information block
This sample output shows the table information block for a query on the
titles table:

Beginning selection of qualifying indexes for table ’titles’,
correlation name ’t’, varno = 0, objectid 208003772.
 The table (Datapages) has 5000 rows, 736 pages,
 Data Page Cluster Ratio 0.999990
 The table has 5 partitions.
 The largest partition has 211 pages.
 The partition skew is 1.406667.

Table information block

872

Identifying the table
The first two lines identify the table, giving the table name, the correlation
name (if one was used in the query), a varno value that identifies the order
of the table in the from clause, and the object ID for the table.

In the query, titles is specified using “t” as a correlation name, as in:

 from titles t

The correlation name is included in the output only if a correlation name
was used in the query. The correlation name is especially useful when you
are trying to analyze the output from subqueries or queries doing self-joins
on a table, such as:

 from sysobjects o1, sysobjects o2

Basic table data
The next lines of output provide basic data about the table: the locking
scheme, the number of rows, and the number of pages in the table. The
locking scheme is one of: Allpages, Datapages, or Datarows.

Cluster ratio
The next line prints the data page cluster ratio for the table.

Partition information
The following lines are included only for partitioned tables. They give the
number of partitions, plus the number of pages in the largest partition, and
the skew:

The table has 5 partitions.
The largest partition has 211 pages.
The partition skew is 1.406667.

This information is useful if you are tuning parallel queries, because:

• Costing for parallel queries is based on the cost of accessing the
table’s largest partition.

• The optimizer does not choose a parallel plan if the partition skew is
2.0 or greater.

CHAPTER 37 Tuning with dbcc traceon

873

See Chapter 22, “Parallel Query Processing,” for more information on
parallel query optimization.

Base cost block
The optimizer determines the cost of a table scan as a first step. It also
displays the caches used by the table, the availability of large I/O, and the
cache replacement strategy.

The following output shows the base cost for the titles table:

Table scan cost is 5000 rows, 748 pages,
 using data prefetch (size 16K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU replacement

If the cache used by the query has only a 2K pool, the prefetch message is
replace by:

using no data prefetch (size 2K I/O)

Concurrency optimization message
For very small data-only-locked tables, the following message may be
included in this block:

If this table has useful indexes, a table scan will
not be considered because concurrency optimization
is turned ON for this table.

For more information, see “Concurrency optimization for small tables”
on page 427.

Clause block
The clause block prints the search clauses and join clauses that the
optimizer considers while it estimates the cost of each index on the table.
Search clauses for all tables are analyzed first, and then join clauses.

Clause block

874

Search clause identification
For search clauses, the clause block prints each of the search clauses that
the optimizer can use. The list should be compared carefully to the clauses
that are included in your query. If query clauses are not listed, it means that
the optimizer did not evaluate them because it cannot use them.

For example, this set of clauses on the titles table:

where type = "business"
 and title like "B%"
 and total_sales > 12 * 1000

produces this list of optimizable search clauses, with the table names
preceding the column names:

Selecting best index for the SEARCH CLAUSE:
 titles.title < ’C’
 titles.title >= ’B’
 titles.type = ’business’
 titles.total_sales > 12000

Notice that the like has been expanded into a range query, searching for >=
‘B’ and <‘C’. All of the clauses in the SQL statement are included in the
dbcc traceon(302) output, and can be used to help optimize the query.

If search argument transitive closure and predicate factoring have added
optimizable search arguments, these are included in this costing block too.

See “Search arguments and useful indexes” on page 392 for more
information.

When search clauses are not optimizable

The following set of clauses on the authors table includes the substring
function on the au_fname column:

 where substring(au_fname,1,4) = "Fred"
 and city = "Miami"

Due to the use of the substring function on a column name, the set of
optimizable clauses does not include the where clause on the au_fname
column:

Selecting best index for the SEARCH CLAUSE:
 authors.city = ’Miami’

CHAPTER 37 Tuning with dbcc traceon

875

Values unknown at optimize time

For values that are not known at optimize time, dbcc traceon(302) prints
“unknown-value.” For example, this clause uses the getdate function:

where pubdate > getdate()

It produces this message in the search clause list:

titles.pubdate > unknown-value

Join clause identification
Once all of the search clauses for each table have been analyzed, the join
clauses are analyzed and optimized.

Each table is analyzed in the order listed in the from clause. dbcc
traceon(302) prints the operator and table and column names, as shown in
this sample output of a join between titleauthor and titles, during the costing
of the titleauthor table:

Selecting best index for the JOIN CLAUSE:
 titleauthor.title_id = titles.title_id

The table currently undergoing analysis is always printed on the left in the
join clause output. When the titles table is being analyzed, titles is printed
first:

Selecting best index for the JOIN CLAUSE:
 titles.title_id = titleauthor.title_id

If you expect an index for a join column to be used, and it is not, check for
the JOIN CLAUSE output with the table as the leading table. If it is not
included in the output, check for datatype mismatches on the join columns.

Sort avert messages
If the query includes an order by clause, additional messages are displayed.
The optimizer checks to see if an index matches the ordering required by
the order by clause, to avoid incurring sort costs for the query.

This message is printed for search clauses:

 Selecting best index for the SEARCH SORTAVERT CLAUSE:
 titles.type = ’business’

Column block

876

The message for joins shows the column under consideration first. This
message is printed while the optimizer analyzes the titles table:

Selecting best index for the JOIN SORTAVERT CLAUSE:
 titles.title_id = titleauthor.title_id

At the end of the block for the search or join clause, one of two messages
is printed, depending on whether an index exists that can be used to avoid
performing a sort step. If no index is available, this message is printed:

No sort avert index has been found for table ’titles’
(objectid 208003772, varno = 0).

If an index can be used to avoid the sort step, the sort-avert message
includes the index ID, the number of pages that need to be accessed, and
the number of rows to be returned for each scan. This is a typical message:

The best sort-avert index is index 3, costing 9 pages
and generating 8 rows per scan.

This message does not mean that the optimizer has decided to use this
index. It means simply that, if this index is used, it does not require a sort.

If you expect an index to be used to avoid a sort, and you see the “No sort
avert index” message, check the order by clauses in the query for the use
of asc and desc to request ascending and descending ordering, and check
the ordering specifications for the index.

For more information, see “Costing for queries using order by” on page
449.

Column block
This section prints the selectivity of each optimizable search argument or
join clause. Selectivity is used to estimate the number of matching rows
for a search clause or join clause.

The optimizer uses column statistics, if they exist and if the value of the
search argument is known at optimize time. If not, the optimizer uses
default values.

CHAPTER 37 Tuning with dbcc traceon

877

Selectivities when statistics exist and values are known
This shows the selectivities for a search clause on the title column, when
an index exists for the column:

Estimated selectivity for title,
 selectivity = 0.001077, upper limit = 0.060200.

For equality search arguments where the value falls in a range cell:

• The selectivity is the “Range cell density” displayed by optdiag.

• The upper limit is the weight of the histogram cell.

If the value matches a frequency cell, the selectivity and upper limit are the
weight of that cell.

For range queries, the upper limit is the sum of the weights of all histogram
cells that contain values in the range. The upper limit is used only in cases
where interpolation yields a selectivity that is greater than the upper limit.

The upper limit is not printed when the selectivity for a search argument
is 1.

For join clauses, the selectivity is the “Total density” displayed by optdiag.

When the optimizer uses default values
The optimizer uses default values for selectivity:

• When the value of a search argument is not known at the time the
query is optimized

• For search arguments where no statistics are available

In both of these cases, the optimizer uses different default values,
depending on the operators used in the query clause.

Unknown values

Unknown values include variables that are set in the same batch as the
query and values set within a stored procedure. This message indicates an
unknown value for a column where statistics are available and the equality
(=) operator is used:

SARG is a local variable or the result of a function or an expression,
using the total density to estimate selectivity.

Column block

878

Similar messages are printed for open-ended range queries and queries
using between.

If no statistics are available

If no statistics are available for a column, a message indicates the default
selectivity that will be used. This message is printed for an open-ended
range query on the total_sales table:

No statistics available for total_sales,
using the default range selectivity to estimate selectivity.

Estimated selectivity for total_sales,
 selectivity = 0.330000.

See “Default values for search arguments” on page 397 for the default
values used for search arguments and “When statistics are not available
for joins” on page 399 for the default values used for joins.

You may be able to improve optimization for queries where default values
are used frequently, by creating statistics on the columns.

See “Creating and updating column statistics” on page 747.

Out-of-range messages
Out-of-range messages are printed when a search argument is out of range
of the values included in the histogram for an indexed column.

The following clause searches for a value greater than the last title_id:

 where title_id > "Z"

dbcc traceon(302) prints:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Lower bound search value ’’Z’’ is greater than the largest value
in sysstatistics for this column.

For a clause that searches for a value that is less than the first key value in
an index, dbcc traceon(302) prints:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Upper bound search value ’’B’’ is less than the smallest value
in sysstatistics for this column.

CHAPTER 37 Tuning with dbcc traceon

879

If the equality operator is used instead of a range operator, the messages
read:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Equi-SARG search value ’’Zebracode’’ is greater than the largest
value in sysstatistics for this column.

or:

Estimated selectivity for title_id,
 selectivity = 0.000000, upper limit = 0.000000.
Equi-SARG search value ’’Applepie’’ is less than the smallest value
in sysstatistics for this column.

These messages may simply indicate that the search argument used in the
query is out of range for the values in the table. In that case, no rows are
returned by the query. However, if there are matching values for the out-
of-range keys, it may indicate that it is time to run update statistics on the
table or column, since rows containing these values must have been added
since the last time the histogram was generated.

There is a special case for search clauses using the >= operator and a value
that is less than or equal to the lowest column value in the histogram. For
example, if the lowest value in an integer column is 20, this clause:

where col1 >= 16

produces this message:

Lower bound search condition ’>= 16’ includes all values in this
column.

For these cases, the optimizer assumes that all non-null values in the table
qualify for this search condition.

“Disjoint qualifications” message
The “disjoint qualifications” message often indicates a user error in
specifying the search clauses. For example, this query searches for a range
where there could be no values that match both of the clauses:

 where advance > 10000
 and advance < 1000

The selectivity for such a set of clauses is always 0.0, meaning that no
rows match these qualifications, as shown in this output:

Estimated selectivity for advance,

Column block

880

 disjoint qualifications, selectivity is 0.0.

Forcing messages
dbcc traceon(302) prints messages if any of the index, I/O size, buffer
strategy, or parallel force options are included for a table or if an abstract
plan specifying these scan properties was used to optimize the query. Here
are sample messages for a query using an abstract plan:

For table ‘titles’:
User forces index 2 (index name = type_price_ix)
User forces index and data prefetch of 16K
User forces MRU buffer replacement strategy on index and data
pages
User forces parallel strategy. Parallel Degree = 3

Unique index messages
When a unique index is being considered for a join or a search argument,
the optimizer knows that the query will return one row per scan. The
message includes the index type, the string “returns 1 row,” and a page
estimate, which includes the number of index levels, plus one data page:

Unique clustered index found, returns 1 row, 2 pages
Unique nonclustered index found, returns 1 row, 3 pages

Other messages in the column block
If the statistics for the column have been modified using optdiag, dbcc
traceon(302) prints:

Statistics for this column have been edited.

If the statistics result from an upgrade of an earlier version of the server or
from loading a database from an pre-11.9 version of the server, dbcc
traceon(302) prints:

Statistics for this column were obtained from upgrade.

If this message appears, run update statistics for the table or index.

CHAPTER 37 Tuning with dbcc traceon

881

Index selection block
While costing index access, dbcc traceon(302) prints a set of statistics for
each useful index. This index block shows statistics for an index on
au_lname in the authors table:

Estimating selectivity of index ’au_names_ix’, indid 2
 scan selectivity 0.000936, filter selectivity 0.000936
 5 rows, 3 pages, index height 2,
 Data Row Cluster Ratio 0.990535,
 Index Page Cluster Ratio 0.538462,
 Data Page Cluster Ratio 0.933579

Scan and filter selectivity values
The index selection block includes, a scan selectivity value and a filter
selectivity value. In the example above, these values are the same
(0.000936).

For queries that specify search arguments on multiple columns, these
values are different when the search arguments include the leading key,
and some other index key that is not part of a prefix subset.

That is, if the index is on columns A, B, C, D, a query specifying search
arguments on A, B, and D will have different scan and filter selectivities.
The two selectivities are used for estimating costs at different levels:

How scan and filter selectivity can differ

This statement creates a composite index on titles:

create index composite_ix
on titles (pub_id, type, price)

Both of the following clauses can be used to position the start of the search
and to limit the end point, since the leading columns are specified:

Scan Selectivity Filter Selectivity

Used to estimate: Number of index rows and
leaf-level pages to be read

Number of data pages to be
accessed

Determined by: Search arguments on
leading columns in the
index

All search arguments on the
index under consideration.
even if they are not part of
the prefix subset for the
index

Index selection block

882

 where pub_id = "P099"
 where pub_id = "P099" and type = "news"

The first example requires reading all the index pages where pub_id equals
“P099”, while the second reads only the index pages where both
conditions are true. In both cases, these queries need to read the data rows
for each of the index rows that are examined, so the scan and filter
selectivity are the same.

In the following example, the query needs to read all of the index leaf-level
pages where pub_id equals “P099”, as in the queries above. But in this
case, Adaptive Server examines the value for price, and needs to read only
those data pages where the price is less than $50:

 where pub_id = "P099" and price < $50

In this case, the scan and filter selectivity differ. If column-level statistics
exist for price, the optimizer combines the column statistics on pub_id and
price to determine the filter selectivity, otherwise the filter selectivity is
estimated using the default range selectivity.

In the dbcc traceon(302) output below, the selectivity for the price column
uses the default value, 0.33, for an open range. When combined with the
selectivity of 0.031400 for pub_id, it yields the filter selectivity of
0.010362 for composite_ix:

Selecting best index for the SEARCH CLAUSE:
 titles.price < 50.00
 titles.pub_id = ’P099’

Estimated selectivity for pub_id,
 selectivity = 0.031400, upper limit = 0.031400.

No statistics available for price,
using the default range selectivity to estimate selectivity.

Estimated selectivity for price,
 selectivity = 0.330000.

Estimating selectivity of index ’composite_ix’, indid 6
 scan selectivity 0.031400, filter selectivity 0.010362
 52 rows, 57 pages, index height 2,
 Data Row Cluster Ratio 0.013245,
 Index Page Cluster Ratio 1.000000,
 Data Page Cluster Ratio 0.100123

CHAPTER 37 Tuning with dbcc traceon

883

Other information in the index selection block
The index selection block prints out an estimate of the number of rows that
would be returned if this index were used and the number of pages that
would need to be read. It includes the index height.

For a single-table query, this information is basically all that is needed for
the optimizer to choose between a table scan and the available indexes. For
joins, this information is used later in optimization to help determine the
cost of various join orders.

The three cluster ratio values for the index are printed, since estimates for
the number of pages depend on cluster ratios.

If the index covers the query, this block includes the line:

Index covers query.

This message indicates that the data pages of the table do not have to be
accessed if this index is chosen.

Best access block
The final section for each SARG or join block for a table shows the best
qualifying index for the clauses examined in the block.

When search arguments are being analyzed, the best access block looks
like:

The best qualifying index is ’pub_id_ix’ (indid 5)
 costing 153 pages,
 with an estimate of 168 rows to be returned per scan of the table,
 using index prefetch (size 16K I/O) on leaf pages,
 in index cache ’default data cache’ (cacheid 0) with LRU
replacement
 using no data prefetch (size 2K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU replacement
Search argument selectivity is 0.033539.

If no useful index is found, the final block looks like:

The best qualifying access is a table scan,
 costing 621 pages,
 with an estimate of 1650 rows to be returned per scan of the table,
 using data prefetch (size 16K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU replacement

Best access block

884

Search argument selectivity is 0.330000.

For joins, there are two best access blocks when a merge join is considered
during the join-costing phase, one for nested-loop join cost, and one for
merge-join cost:

The best qualifying Nested Loop join index is ’au_city_ix’ (indid
4)
 costing 6 pages,
 with an estimate of 4 rows to be returned per scan of the table,
 using index prefetch (size 16K I/O) on leaf pages,
 in index cache ’default data cache’ (cacheid 0) with LRU
replacement
 using no data prefetch (size 2K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU
replacement
Join selectivity is 0.000728.

The best qualifying Merge join index is ’au_city_ix’ (indid 4)
 costing 6 pages,
 with an estimate of 4 rows to be returned per scan of the table,
 using no index prefetch (size 2K I/O) on leaf pages,
 in index cache ’default data cache’ (cacheid 0) with LRU
replacement
 using no data prefetch (size 2K I/O),
 in data cache ’default data cache’ (cacheid 0) with LRU
replacement
Join selectivity is 0.000728.

Note that the output in this block estimates the number of “rows to be
returned per scan of the table.” At this point in query optimization, the join
order has not yet been chosen.

If this table is the outer table, the total cost of accessing the table is 6 pages,
and it is estimated to return 4 rows.

If this query is an inner table of a nested-loop join, with a cost of 6 pages
each time, each access is estimated to return 4 rows. The number of times
the table will be scanned depends on the number of estimated qualifying
rows for the other table in the join.

If no index qualifies as a possible merge-join index, dbcc traceon(302)
prints:

If this access path is selected for merge join, it
will be sorted

CHAPTER 37 Tuning with dbcc traceon

885

dbcc traceon(310) and final query plan costs
The end of each search clause and join clause block prints the best index
for the search or join clauses in that particular block. If you are concerned
only about the optimization of the search arguments, dbcc traceon(302)
output has probably provided the information you need.

The choice of the best query plan also depends on the join order for the
tables, which is the next step in query optimization after the index costing
step completes. dbcc traceon(310) provides information about the join
order selection step.

It starts by showing the number of tables considered at a time during a join.
This message shows three-at-a-time optimization, with the default for set
table count, and a 32-table join:

QUERY IS CONNECTED
Number of tables in join: 32
Number of tables considered at a time: 3
Table count setting: 0 (default value used)

dbcc traceon(310) prints the first plan that the optimizer considers, and
then each cheaper plan, with the heading “NEW PLAN.”

To see all of the plans, use dbcc traceon(317). It prints each plan
considered, with the heading “WORK PLAN.” This may produce an
extremely large amount of output, especially for queries with many tables,
many indexes, and numerous query clauses.

If you use dbcc traceon(317), also use dbcc traceon(3604) and direct the
output to a file, rather than to the server’s error log to avoid filling up the
error log device.

dbcc traceon(310) or (317) prints the join orders being considered as the
optimizer analyzes each of the permutations. It uses the varno,
representing the order of the tables in the from clause. For example, for the
first permutation, it prints:

 0 - 1 - 2 -

This is followed by the cost of joining the tables in this order. The
permutation order for subsequent join orders follows, with “NEW PLAN”
and the analysis of each table for the plan appearing whenever a cheaper
plan is found. Once all plans have been examined, the final plan is
repeated, with the heading “FINAL PLAN”. This is the plan that Adaptive
Server uses for the query.

dbcc traceon(310) and final query plan costs

886

Flattened subquery join order message
For some flattened subqueries, certain join orders are possible only if a
sort is later used to remove duplicate results. When one of these join orders
is considered, the following message is printed right after the join
permutation order is printed:

2 - 0 - 1 -

This join order created while converting an exists join to a
regular join, which can happen for subqueries, referential
integrity, and select distinct.

For more information on subqueries and join orders, see “Flattened
subqueries using duplicate elimination” on page 504.

Worker process information
Just before printing final plan information, dbcc traceon(310) prints the
parallel configuration parameters and session level settings in effect when
the command was run.

PARALLEL:
 number of worker processes = 20
 max parallel degree = 10
 min(configured,set) parallel degree = 10
 min(configured,set) hash scan parallel degree = 3

If session-level limits or simulated statistics in effect when the query is
optimized, those values are shown in the output.

Final plan information
The plan chosen by the optimizer is displayed in the final plan block.
Information about the cost of each table is printed; the output starts from
the outermost table in the join order.

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
 publishers p
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and p.pub_id = t.pub_id
 and type = ’business’

CHAPTER 37 Tuning with dbcc traceon

887

 and price < $25
FINAL PLAN (total cost = 3909)

varno=0 (titles) indexid=1 (title_id_ix)
path=0xd6b25148 pathtype=pll-mrgscan-outer
method=NESTED ITERATION
scanthreads=3
outerrows=1 outer_wktable_pgs=0 rows=164 joinsel=1.000000
jnpgs_per_scan=3 scanpgs=623
data_prefetch=YES data_iosize=16 data_bufreplace=LRU
scanlio_perthrd=211 tot_scanlio=633 scanpio_perthrd=116
tot_scanpio=346
outer_srtmrglio=0 inner_srtmrglio=0
corder=1

varno=2 (titleauthor) indexid=3 (ta_ix)
path=0xd6b20000 pathtype=pll-mrgscan-inner
method=FULL MERGE JOIN
scanthreads=3 mergethreads=3
outerrows=164 outer_wktable_pgs=0 rows=243 joinsel=0.000237
jnpgs_per_scan=2 scanpgs=87
index_prefetch=YES index_iosize=16 index_bufreplace=LRU
scanlio_perthrd=29 total_scanlio=87 scanpio_perthrd=29
tot_scanpio=87
outer_srtmrglio_perthrd=0 tot_outer_srtmrglio=0
inner_srtmrglio_perthrd=0 tot_inner_srtmrglio=0
corder=2

varno=1 (authors) indexid=3 (au_id_ix)
path=0xd6b20318 pathtype=join
method=NESTED ITERATION
scanthreads=1
outerrows=243 rows=243 joinsel=0.000200 jnpgs_per_scan=3
index_prefetch=NO index_iosize=2 index_bufreplace=LRU
data_prefetch=NO data_iosize=2 data_bufreplace=LRU
scanlio=82 scanpio=9
corder=1

jnvar=2 refcost=0 refpages=0 reftotpages=0 ordercol[0]=1
ordercol[1]=1

varno=3 (publishers) indexid=0 ()
path=0xd6b1f150 pathtype=sclause
method=SORT MERGE JOIN
scanthreads=1
outerrows=243 outer_wktable_pgs=7 rows=243 joinsel=0.033333

dbcc traceon(310) and final query plan costs

888

jnpgs_per_scan=1 scanpgs=3
data_prefetch=NO data_iosize=2 data_bufreplace=LRU
scanlio=3 scanpio=3
outer_srtmrglio_perthrd=88 tot_outer_srtmrglio=250
inner_srtmrglio_perthrd=31 tot_inner_srtmrglio=30
corder=0

Sort-Merge Cost of Inner = 98
Sort-Merge Cost of Outer = 344

For the showplan output for the same query, see “Merge join messages” on
page 790.

Table 37-1 shows the meaning of the values in the output.

CHAPTER 37 Tuning with dbcc traceon

889

Table 37-1: dbcc traceon(310) output

Label Information provided

varno Indicates the table order in the from clause, starting
with 0 for the first table. The table name is provided
in parentheses.

indexid The index ID, followed by the index name, or 0 for
a table scan.

pathtype The access method for this table. See Table 37-2.

method The method used for the scan or join:

• NESTED ITERATION

• NESTED ITERATION with Tuple Filtering

• REFORMATTING

• REFORMATTING with Unique Reformatting

• OR OPTIMIZATION

• SORT MERGE JOIN

• RIGHT MERGE JOIN

• LEFT MERGE JOIN

• FULL MERGE JOIN

scanthreads Number of worker processes to be used for the scan
of this table.

merge threads Number of threads to use for a parallel data merge,
for a sort-merge join.

outerrows Number of rows that qualify from the outer tables in
the query or 1, for the first table in the join order.

outer_wktable_pgs For a merge join, the number of pages in the
worktable that is outer to this table, or tables in a
full-merge join.

rows Number of rows estimated to qualify in this table or
as a result of this join. For a parallel query, this is the
maximum number of rows per worker process.

joinsel The join selectivity.

jnpgs_per_scan Number of index and data pages to be read for each
scan.

scanpgs The total number of index and data pages to be read
for the table.

index_prefetch YES if large I/O will be used on index leaf pages
(not printed for table scans and allpages-locked
table clustered index scans).

dbcc traceon(310) and final query plan costs

890

index_iosize The I/O size to be used on the index leaf pages (not
printed for table scans and allpages-locked table
clustered index scans).

index_bufreplace The buffer replacement strategy to be used on the
index leaf pages (not printed for table scans and
allpages-locked table clustered index scans).

data_prefetch YES if large I/O will be used on the data pages; NO
if large I/O will not be used (not printed for covered
scans).

data_iosize The I/O size to be used on the data pages (not printed
for covered scans).

data_bufreplace The buffer replacement strategy to be used on the
data pages (not printed for covered scans).

scanlio Estimated total logical I/O for a serial query.

scanpio Estimated total physical I/O for a serial query.

scanlio_perthrd Estimated logical I/O per thread, for a parallel query.

tot_scanlio Estimated total logical I/O, for a parallel query.

scanpio_perthrd Estimated physical I/O per thread, for a parallel
query.

tot_scanpio Estimated total physical I/O, for a parallel query.

outer_srtmrglio_perthrd Estimated logical I/O on the outer table to perform
the sort-merge, per thread.

tot_outer_srtmrglio Estimated total logical I/O on the outer table to
perform a sort-merge.

inner_srtmrglio_perthrd Estimated logical I/O on the inner table to perform a
sort-merge join, per thread.

tot_inner_srtmrglio Estimated total logical I/O on the inner table to
perform a sort-merge join.

corder The order of the column used as a search argument
or join key.

jnvar The varno of the table to which this table is being
joined, for second and subsequent tables in a join.

refcost The total cost of reformatting, when reformatting is
considered as an access method.

refpages The number of pages read in each scan of the table
created for formatting. Included for the second and
subsequent tables in the join order.

reftotpages The number of pages in the table created for
formatting. Included for the second and subsequent
tables in the join order.

Label Information provided

CHAPTER 37 Tuning with dbcc traceon

891

Table 37-2 shows the access methods that correspond to the pathtype
information in the dbcc traceon(310) output.

Table 37-2: pathtypes in dbcc traceon(310) output

Sort-merge costs

If the query plan includes a sort-merge join, the cost of creating the
worktables and sorting them are printed. These messages include the total
cost that is added to the query cost:

Sort-Merge Cost of Inner = 538
Sort-Merge Cost of Outer = 5324

These are the total costs of performing the sort-merge work, representing
the logical I/O on the worktables multiplied by 2.

ordercol[0] The order of the join column from the inner table.

ordercol[1] The order of the join column from the outer table.

pathtype Access method

sclause Search clause

join Join

orstruct or clause

join-sort Join, using a sort-avert index

sclause-sort Search clause, using a sort-avert index

pll-sarg-nc Parallel index hash scan on a search clause

pll-join-nc Parallel index hash scan on a join clause

pll-sarg-cl Parallel clustered index scan on a search clause

pll-join-cl Parallel clustered index scan on a join

pll-sarg-cp Parallel partitioned clustered index scan on a search
clause

pll-join-cp Parallel partitioned clustered index scan on a join
clause

pll-partition Parallel partitioned table scan

pll-nonpart Parallel nonpartitioned table scan

pll-mrg-scan-inner Parallel sort-merge join, with this table as the inner
table

pll-mrg-scan-outer Parallel sort-merge join, with this table as the outer
table

Label Information provided

dbcc traceon(310) and final query plan costs

892

893

C H A P T E R 3 8 Monitoring Performance with
sp_sysmon

This chapter describes output from sp_sysmon, a system procedure that
produces Adaptive Server performance data. It includes suggestions for
interpreting its output and deducing possible implications.

sp_sysmon output is most valuable when you have a good understanding
of your Adaptive Server environment and its specific mix of applications.
Otherwise, you may find that sp_sysmon output has little relevance.

Topic Page
Using 894

Invoking 895

How to use the reports 898

Sample interval and time reporting 901

Kernel utilization 902

Worker process management 908

Parallel query management 911

Task management 914

Application management 923

ESP management 929

Housekeeper task activity 930

Monitor access to executing SQL 931

Transaction profile 933

Transaction management 940

Index management 946

Metadata cache management 955

Lock management 958

Data cache management 967

Procedure cache management 982

Memory management 984

Recovery management 984

Disk I/O management 988

Network I/O management 993

Using

894

Using
When you invoke sp_sysmon, it clears all accumulated data from a set of
counters that will be used during the sample interval to accumulate the
results of user and system activity. At the end of the sample interval, the
procedure reads the values in the counters, prints the report, and stops
executing.

sp_sysmon contributes 5 to 7% overhead while it runs on a single CPU
server, and more on multiprocessor servers. The amount of overhead
increases with the number of CPUs.

 Warning! sp_sysmon and Adaptive Server Monitor use the same internal
counters. sp_sysmon resets these counters to 0, producing erroneous
output for Adaptive Server Monitor when it is used simultaneously with
sp_sysmon.

Also, starting a second execution of sp_sysmon while an earlier execution
is running clears all the counters, so the first iteration of reports will be
inaccurate.

When to run
You can run sp_sysmon both before and after tuning Adaptive Server
configuration parameters to gather data for comparison. This data gives
you a basis for performance tuning and lets you observe the results of
configuration changes.

Use sp_sysmon when the system exhibits the behavior you want to
investigate. For example, if you want to find out how the system behaves
under typically loaded conditions, run sp_sysmon when conditions are
normal and typically loaded.

In this case, it would not make sense to run sp_sysmon for 10 minutes
starting at 7:00 p.m., before the batch jobs begin and after most of the day’s
OLTP users have left the site. Instead, it would be best to run sp_sysmon
both during the normal OLTP load and during batch jobs.

In many tests, it is best to start the applications, and then start sp_sysmon
when the caches have had a chance to reach a steady state. If you are trying
to measure capacity, be sure that the amount of work you give the server
keeps it busy for the duration of the test.

CHAPTER 38 Monitoring Performance with sp_sysmon

895

Many of the statistics, especially those that measure data per second, can
look extremely low if the server is idle during part of the sample interval.

In general, sp_sysmon produces valuable information when you use it:

• Before and after cache or pool configuration changes

• Before and after certain sp_configure changes

• Before and after the addition of new queries to your application mix

• Before and after an increase or decrease in the number of Adaptive
Server engines

• When adding new disk devices and assigning objects to them

• During peak periods, to look for contention or bottlenecks

• During stress tests to evaluate an Adaptive Server configuration for a
maximum expected application load

• When performance seems slow or behaves abnormally

It can also help with micro-level understanding of certain queries or
applications during development. Some examples are:

• Working with indexes and updates to see if certain updates reported
as deferred_varcol are resulting direct vs. deferred updates

• Checking caching behavior of particular queries or a mix of queries

• Tuning the parameters and cache configuration for parallel index
creation

Invoking
There are two ways to use sp_sysmon:

• Using a fixed time interval to provide a sample for a specified number
of minutes

• Using the begin_sample and end_sample parameters to start and stop
sampling

You can also tailor the output to provide the information you need:

• You can print the entire report.

Invoking

896

• You can print just one section of the report, such as “Cache
Management” or “Lock Management.”

• You can include application-level detailed reporting for named
applications (such as isql, bcp, or any named application) and for
combinations of named applications and user names. (The default is
to omit this section.)

Fixed time intervals
To invoke sp_sysmon, execute the following command using isql:

sp_sysmon interval [, section [, applmon]]

interval must be in the form “hh:mm:ss”. To run sp_sysmon for 10
minutes, use this command:

sp_sysmon "00:10:00"

The following command prints only the “Data Cache Management”
section of the report:

sp_sysmon "00:10:00", dcache

For information on the applmon parameter, see “Specifying the
application detail parameter” on page 897.

Using begin_sample and end_sample
With the begin_sample and end_sample parameters, you can invoke
sp_sysmon to start sampling, issue queries, and end the sample and print
the results at any point in time. For example:

sp_sysmon begin_sample
execute proc1
execute proc2
select sum(total_sales) from titles
sp_sysmon end_sample

Note On systems with many CPUs and high activity, counters can
overflow if the sample period is too long.

If you see negative results in your sp_sysmon output, reduce your sample
time.

CHAPTER 38 Monitoring Performance with sp_sysmon

897

Specifying report sections for output
To print only a single section of the report, use one of the values listed in
Table 38-1 for the second parameter.

Table 38-1: sp_sysmon report sections

Specifying the application detail parameter
If you specify the third parameter to sp_sysmon, the report includes
detailed information by application or by application and login name. This
parameter is valid only when you print the entire report or when you
request the “Application Management” section by specifying appmgmt as
the section. It is ignored if you specify it and request any other section of
the report.

The third parameter must be one of the following:

Report section Parameter

Application Management appmgmt

Data Cache Management dcache

Disk I/O Management diskio

ESP Management esp

Houskeeper Task Activity housekeeper

Index Management indexmgmt

Kernel Utilization kernel

Lock Management locks

Memory Management memory

Metadata Cache Management mdcache

Monitor Access to Executing SQL monaccess

Network I/O Management netio

Parallel Query Management parallel

Procedure Cache Management pcache

Recovery Management recovery

Task Management taskmgmt

Transaction Management xactmgmt

Transaction Profile xactsum

Worker Process Management wpm

How to use the reports

898

This example runs sp_sysmon for 5 minutes and prints the “Application
Management” section, including the application and login detail report:

sp_sysmon "00:05:00", appmgmt, appl_and_login

See “Per application or per application and login” on page 928 for sample
output.

Redirecting output to a file
A full sp_sysmon report contains hundreds of lines of output. Use isql
input and output redirect flags to save the output to a file.

See the Utility Programs manual for more information on isql.

How to use the reports
sp_sysmon can give you information about Adaptive Server system
behavior both before and after tuning. It is important to study the entire
report to understand the full impact of the changes you make. Sometimes
removing one performance bottleneck reveals another.

 It is also possible that your tuning efforts might improve performance in
one area, while actually causing performance degradation in another area.

In addition to pointing out areas for tuning work, sp_sysmon output is
valuable for determining when further tuning will not pay off in additional
performance gains.

It is just as important to know when to stop tuning Adaptive Server, or
when the problem resides elsewhere, as it is to know what to tune.

Other information can contribute to interpreting sp_sysmon output:

Parameter Information reported

appl_only CPU, I/O, priority changes, and resource limit
violations by application name.

appl_and_login CPU, I/O, priority changes, and resource limit
violations by application name and login name.

no_appl Skips the application and login section of the
report. This is the default.

CHAPTER 38 Monitoring Performance with sp_sysmon

899

• Information on the configuration parameters in use, from sp_configure
or the configuration file

• Information on the cache configuration and cache bindings, from
sp_cacheconfig and sp_helpcache

• Information on disk devices, segments, and the objects stored on them

Reading output
sp_sysmon displays performance statistics in a consistent tabular format.
For example, in an SMP environment running nine Adaptive Server
engines, the output typically looks like this:

Engine Busy Utilization:
 Engine 0 98.8 %
 Engine 1 98.8 %
 Engine 2 97.4 %
 Engine 3 99.5 %
 Engine 4 98.7 %
 Engine 5 98.7 %
 Engine 6 99.3 %
 Engine 7 98.3 %
 Engine 8 97.7 %
 ----------- --------------- ----------------
 Summary: Total: 887.2 % Average: 98.6 %

Rows

Most rows represent a specific type of activity or event, such as acquiring
a lock or executing a stored procedure. When the data is related to CPUs,
the rows show performance information for each Adaptive Server engine
in the SMP environment. Often, when there are groups of related rows, the
last row is a summary of totals and an average.

The sp_sysmon report indents some rows to show that one category is a
subcategory of another. In the following example, “Found in Wash” is a
subcategory of “Cache Hits”, which is a subcategory of “Cache Searches”:

Cache Searches
 Cache Hits 202.1 3.0 12123 100.0 %
 Found in Wash 0.0 0.0 0 0.0 %
 Cache Misses 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------

How to use the reports

900

 Total Cache Searches 202.1 3.0 12123

Many rows are not printed when the “count” value is 0.

Columns

Unless otherwise stated, the columns represent the following performance
statistics:

• “per sec”– average per second during sampling interval

• “per xact” – average per committed transaction during sampling
interval

• “count” – total number during the sample interval

• “% of total” – varies, depending on context, as explained for each
occurrence

Interpreting the data
When tuning Adaptive Server, the fundamental measures of success
appear as increases in throughput and reductions in application response
time. Unfortunately, tuning Adaptive Server cannot be reduced to printing
these two values.

In most cases, your tuning efforts must take an iterative approach,
involving a comprehensive overview of Adaptive Server activity, careful
tuning and analysis of queries and applications, and monitoring locking
and access on an object-by-object basis.

Per second and per transaction data

Weigh the importance of the per second and per transaction data on the
environment and the category you are measuring. The per transaction data
is generally more meaningful in benchmarks or in test environments where
the workload is well defined.

It is likely that you will find per transaction data more meaningful for
comparing test data than per second data alone because in a benchmark
test environment, there is usually a well-defined number of transactions,
making comparison straightforward. Per transaction data is also useful for
determining the validity of percentage results.

CHAPTER 38 Monitoring Performance with sp_sysmon

901

Percent of total and count data

The meaning of the “% of total” data varies, depending on the context of
the event and the totals for the category. When interpreting percentages,
keep in mind that they are often useful for understanding general trends,
but they can be misleading when taken in isolation.

For example, 50% of 200 events is much more meaningful than 50% of 2
events.

The “count” data is the total number of events that occurred during the
sample interval. You can use count data to determine the validity of
percentage results.

Per engine data

In most cases, per engine data for a category shows a fairly even balance
of activity across all engines. Two exceptions are:

• If you have fewer processes than CPUs, some of the engines will
show no activity.

• If most processes are doing fairly uniform activity, such as simple
inserts and short selects, and one process performs some I/O intensive
operation such as a large bulk copy, you will see unbalanced network
and disk I/O.

Total or summary data

Summary rows provide an overview of Adaptive Server engine activity by
reporting totals and averages.

Be careful when interpreting averages because they can give false
impressions of true results when the data is skewed. For example, if one
Adaptive Server engine is working 98% of the time and another is working
2% of the time, a 49% average can be misleading.

Sample interval and time reporting
The heading of an sp_sysmon report includes the software version, server
name, date, the time the sample interval started, the time it completed, and
the duration of the sample interval.

Kernel utilization

902

==
 Sybase Adaptive Server Enterprise System Performance Report
==
Server Version: Adaptive Server Enterprise/12.0/P/Sun_svr4/OS 5.6/1548/3
Server Name: tinman
Run Date Sep 20, 1999
Statistics Cleared at 16:05:40
Statistics Sampled at 16:15:40
Sample Interval 00:10:00

Kernel utilization
“Kernel Utilization” reports Adaptive Server activities. It tells you how
busy Adaptive Server engines were during the time that the CPU was
available to Adaptive Server, how often the CPU yielded to the operating
system, the number of times that the engines checked for network and disk
I/O, and the average number of I/Os they found waiting at each check.

Sample output
The following sample shows sp_sysmon output for “Kernel Utilization” in
an environment with eight Adaptive Server engines.

Kernel Utilization

 Engine Busy Utilization:
 Engine 0 98.5 %
 Engine 1 99.3 %
 Engine 2 98.3 %
 Engine 3 97.2 %
 Engine 4 97.8 %
 Engine 5 99.3 %
 Engine 6 98.8 %
 Engine 7 99.7 %
 ----------- --------------- ----------------
 Summary: Total: 789.0 % Average: 98.6 %

 CPU Yields by Engine per sec per xact count % of total

CHAPTER 38 Monitoring Performance with sp_sysmon

903

 ------------------------- --------- --------- ------- ----------
 0.0 0.0 0 n/a
 Network Checks
 Non-Blocking 79893.3 1186.1 4793037 100.0 %
 Blocking 1.1 0.0 67 0.0 %
 ------------------------- --------- --------- -------
 Total Network I/O Checks 79894.4 1186.1 4793104
 Avg Net I/Os per Check n/a n/a 0.00169 n/a

 Disk I/O Checks
 Total Disk I/O Checks 94330.3 1400.4 5659159 n/a
 Checks Returning I/O 92881.0 1378.9 5572210 98.5 %
 Avg Disk I/Os Returned n/a n/a 0.00199 n/a

In this example, the CPU did not yield to the operating system, so there are
no detail rows.

Engine busy utilization
“Engine Busy Utilization” reports the percentage of time the Adaptive
Server Kernel is busy executing tasks on each Adaptive Server engine
(rather than time spent idle). The summary row gives the total and the
average active time for all engines combined.

The values reported here may differ from the CPU usage values reported
by operating system tools. When Adaptive Server has no tasks to process,
it enters a loop that regularly checks for network I/O, completed disk I/Os,
and tasks in the run queue.

Operating system commands to check CPU activity may show high usage
for a Adaptive Server engine because they are measuring the looping
activity, while “Engine Busy Utilization” does not include time spent
looping—it is considered idle time.

One measurement that cannot be made from inside Adaptive Server is the
percentage of time that Adaptive Server had control of the CPU vs. the
time the CPU was in use by the operating system. Check your operating
system documentation for the correct commands.

If you want to reduce the time that Adaptive Server spends checking for
I/O while idle, you can lower the sp_configure parameter runnable process
search count. This parameter specifies the number of times a Adaptive
Server engine loops looking for a runnable task before yielding the CPU.

Kernel utilization

904

For more information, see the System Administration Guide.

“Engine Busy Utilization” measures how busy Adaptive Server engines
were during the CPU time they were given. If the engine is available to
Adaptive Server for 80% of a 10-minute sample interval, and “Engine
Busy Utilization” was 90%, it means that Adaptive Server was busy for 7
minutes and 12 seconds and was idle for 48 seconds.

This category can help you decide whether there are too many or too few
Adaptive Server engines. Adaptive Server’s high scalability is due to
tunable mechanisms that avoid resource contention.

By checking sp_sysmon output for problems and tuning to alleviate
contention, response time can remain high even at “Engine Busy” values
in the 80 to 90% range. If values are consistently very high (more than
90%), it is likely that response time and throughput could benefit from an
additional engine.

The “Engine Busy Utilization” values are averages over the sample
interval, so very high averages indicate that engines may be 100% busy
during part of the interval.

When engine utilization is extremely high, the housekeeper process writes
few or no pages out to disk (since it runs only during idle CPU cycles.)
This means that a checkpoint finds many pages that need to be written to
disk, and the checkpoint process, a large batch job, or a database dump is
likely to send CPU usage to 100% for a period of time, causing a
perceptible dip in response time.

If the “Engine Busy Utilization” percentages are consistently high, and
you want to improve response time and throughput by adding Adaptive
Server engines, check for increased resource contention in other areas
after adding each engine.

In an environment where Adaptive Server is serving a large number of
users, performance is usually fairly evenly distributed across engines.
However, when there are more engines than tasks, you may see some
engines with a large percentage of utilization, and other engines may be
idle. On a server with a single task running a query, for example, you may
see output like this:

Engine Busy Utilization
 Engine 0 97.2 %
 Engine 1 0.0 %
 Engine 2 0.0 %
 Engine 3 0.0 %
 Engine 4 0.0 %

CHAPTER 38 Monitoring Performance with sp_sysmon

905

 Engine 5 0.0 %
 ----------- --------------- ----------------
 Summary Total 97.2 % Average 16.2 %

In an SMP environment, tasks have soft affinity to engines. Without other
activity (such as lock contention) that could cause this task to be placed in
the global run cue, the task continues to run on the same engine.

CPU yields by engine
“CPU Yields by Engine” reports the number of times each Adaptive
Server engine yielded to the operating system. “% of total” data is the
percentage of times an engine yielded as a percentage of the combined
yields for all engines.

“Total CPU Yields” reports the combined data over all engines.

If the “Engine Busy Utilization” data indicates low engine utilization, use
“CPU Yields by Engine” to determine whether the “Engine Busy
Utilization” data reflects a truly inactive engine or one that is frequently
starved out of the CPU by the operating system.

When an engine is not busy, it yields to the CPU after a period of time
related to the runnable process search count parameter. A high value for
“CPU Yields by Engine” indicates that the engine yielded voluntarily.

If you also see that “Engine Busy Utilization” is a low value, then the
engine really is inactive, as opposed to being starved out.

See the System Administration Guide for more information.

Network checks
“Network Checks” includes information about blocking and non-blocking
network I/O checks, the total number of I/O checks for the interval, and
the average number of network I/Os per network check.

Adaptive Server has two ways to check for network I/O: blocking and non-
blocking modes.

Kernel utilization

906

Non–blocking

“Non-Blocking” reports the number of times Adaptive Server performed
non-blocking network checks. With non-blocking network I/O checks, an
engine checks the network for I/O and continues processing, whether or
not it found I/O waiting.

Blocking

“Blocking” reports the number of times Adaptive Server performed
blocking network checks.

After an engine completes a task, it loops waiting for the network to
deliver a runnable task. After a certain number of loops (determined by the
sp_configure parameter runnable process search count), the Adaptive
Server engine goes to sleep after a blocking network I/O.

When an engine yields to the operating system because there are no tasks
to process, it wakes up once per clock tick to check for incoming network
I/O. If there is I/O, the operating system blocks the engine from active
processing until the I/O completes.

If an engine has yielded to the operating system and is doing blocking
checks, it might continue to sleep for a period of time after a network
packet arrives. This period of time is referred to as the latency period. You
can reduce the latency period by increasing the runnable process search
count parameter so that the Adaptive Server engine loops for longer
periods of time.

See the System Administration Guide for more information.

Total network I/O checks

“Total Network I/O Checks” reports the number of times an engine polls
for incoming and outgoing packets. This category is helpful when you use
it with “CPU Yields by Engine.”

When an engine is idle, it loops while checking for network packets. If
“Network Checks” is low and “CPU Yields by Engine” is high, the engine
could be yielding too often and not checking the network frequently
enough. If the system can afford the overhead, it might be acceptable to
yield less often.

CHAPTER 38 Monitoring Performance with sp_sysmon

907

Average network I/Os per check

“Avg Net I/Os per Check” reports the average number of network I/Os
(both sends and receives) per check for all Adaptive Server engine checks
that took place during the sample interval.

The sp_configure parameter i/o polling process count specifies the
maximum number of processes that Adaptive Server runs before the
scheduler checks for disk and/or network I/O completions. Tuning i/o
polling process count affects both the response time and throughput of
Adaptive Server.

See the System Administration Guide.

If Adaptive Server engines check frequently, but retrieve network I/O
infrequently, you can try reducing the frequency for network I/O checking.

Disk I/O checks
This section reports the total number of disk I/O checks, and the number
of checks returning I/O.

Total disk I/O checks
“Total Disk I/O Checks” reports the number of times engines checked for
disk I/O.

When a task needs to perform I/O, the Adaptive Server engine running that
task immediately issues an I/O request and puts the task to sleep, waiting
for the I/O to complete. The engine processes other tasks, if any, but also
loops to check for completed I/Os. When the engine finds completed I/Os,
it moves the task from the sleep queue to the run queue.

Checks returning I/O

“Checks Returning I/O” reports the number of times that a requested I/O
had completed when an engine checked for disk I/O.

For example, if an engine checks for expected I/O 100,000 times, this
average indicates the percentage of time that there actually was I/O
pending. If, of those 100,000 checks, I/O was pending 10,000 times, then
10% of the checks were effective, and the other 90% were overhead.

Worker process management

908

However, you should also check the average number of I/Os returned per
check and how busy the engines were during the sample interval. If the
sample includes idle time, or the I/O traffic is “bursty,” it is possible that
during a high percentage of the checks were returning I/O during the busy
period.

If the results in this category seem low or high, you can configure i/o polling
process count to increase or decrease the frequency of the checks.

See the System Administration Guide.

Average disk I/Os returned

“Avg Disk I/Os Returned” reports the average number of disk I/Os
returned over all Adaptive Server engine checks combined.

Increasing the amount of time that Adaptive Server engines wait between
checks may result in better throughput because Adaptive Server engines
can spend more time processing if they spend less time checking for I/O.
However, you should verify this for your environment. Use the
sp_configure parameter i/o polling process count to increase the length of
the checking loop.

See the System Administration Guide.

Worker process management
“Worker Process Management” reports the use of worker processes,
including the number of worker process requests that were granted and
denied and the success and failure of memory requests for worker
processes.

You need to analyze this output in combination with the information
reported under “Parallel query management” on page 911.

Sample output
Worker Process Management

 per sec per xact count % of total
 --------- --------- ------- ----------

CHAPTER 38 Monitoring Performance with sp_sysmon

909

 Worker Process Requests
 Requests Granted 0.1 8.0 16 100.0 %
 Requests Denied 0.0 0.0 0 0.0 %
 -------------------------- --------- --------- -------
 Total Requests 0.1 8.0 16

 Requests Terminated 0.0 0.0 0 0.0 %

 Worker Process Usage
 Total Used 0.4 39.0 78 n/a
 Max Ever Used During Sample 0.1 12.0 24 n/a

 Memory Requests for Worker Processes
 Succeeded 4.5 401.0 802 100.0 %
 Failed 0.0 0.0 0 0.0 %

Avg Mem Ever Used by a WP
 (in bytes) n/a n/a 311.7 n/a n/a

Worker process requests
This section reports requests for worker processes and worker process
memory. A parallel query may make multiple requests for worker
processes. For example, a parallel query that requires a sort may make one
request for accessing data and a second for parallel sort.

The “Requests Granted” and “Requests Denied” rows show how many
requests were granted and how many requests were denied due to a lack of
available worker processes at execution time.

To see the number of adjustments made to the number of worker
processes, see “Parallel query usage” on page 912.

“Requests Terminated” reports the number of times a request was
terminated by user action, such as pressing Ctrl-c, that cancelled the query.

Worker process management

910

Worker process usage
In this section, “Total Used” reports the total number of worker processes
used during the sample interval. “Max Ever Used During Sample” reports
the highest number in use at any time during sp_sysmon’s sampling
period. You can use “Max Ever Used During Sample” to set the
configuration parameter number of worker processes.

Memory requests for worker processes
This section reports how many requests were made for memory
allocations for worker processes, how many of those requests succeeded
and how many failed. Memory for worker processes is allocated from a
memory pool configured with the parameter memory per worker process.

If “Failed” is a nonzero value, you may need to increase the value of
memory per worker process.

Avg mem ever used by a WP
This row reports the maximum average memory used by all active worker
processes at any time during the sample interval. Each worker process
requires memory, principally for exchanging coordination messages. This
memory is allocated by Adaptive Server from the global memory pool.

The size of the pool is determined by multiplying the two configuration
parameters, number of worker processes and memory per worker process.

If number of worker processes is set to 50, and memory per worker process
is set to the default value of 1024 bytes, 50K is available in the pool.
Increasing memory for worker process to 2048 bytes would require 50K of
additional memory.

At start-up, static structures are created for each worker process. While
worker processes are in use, additional memory is allocated from the pool
as needed and deallocated when not needed. The average value printed is
the average for all static and dynamically memory allocated for all worker
processes, divided by the number of worker processes actually in use
during the sample interval.

If a large number of worker processes are configured, but only a few are
in use during the sample interval, the value printed may be inflated, due to
averaging in the static memory for unused processes.

CHAPTER 38 Monitoring Performance with sp_sysmon

911

If “Avg Mem” is close to the value set by memory per worker process and
the number of worker processes in “Max Ever Used During Sample” is
close to the number configured, you may want to increase the value of the
parameter.

If a worker process needs memory from the pool, and no memory is
available, the process prints an error message and exits.

Note For most parallel query processing, the default value of 1024 is more
than adequate.

The exception is dbcc checkstorage, which can use up 1792 bytes if only
one worker process is configured. If you are using dbcc checkstorage, and
number of worker processes is set to 1, you may want to increase memory
per worker process.

Parallel query management
“Parallel Query Management” reports the execution of parallel queries. It
reports the total number of parallel queries, how many times the number
of worker processes was adjusted at runtime, and reports on the granting
of locks during merges and sorts.

Sample output
Parallel Query Management

 Parallel Query Usage per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Total Parallel Queries 0.1 8.0 16 n/a
 WP Adjustments Made
 Due to WP Limit 0.0 0.0 0 0.0 %
 Due to No WPs 0.0 0.0 0 0.0 %

 Merge Lock Requests per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Network Buffer Merge Locks
 Granted with no wait 4.9 438.5 877 56.2 %

Parallel query management

912

 Granted after wait 3.7 334.5 669 42.9 %

 Result Buffer Merge Locks
 Granted with no wait 0.0 0.0 0 0.0 %
 Granted after wait 0.0 0.0 0 0.0 %

 Work Table Merge Locks
 Granted with no wait 0.1 7.0 14 0.9 %
 Granted after wait 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total # of Requests 8.7 780.0 1560

 Sort Buffer Waits per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Total # of Waits 0.0 0.0 0 n/a

Parallel query usage
“Total Parallel Queries” reports the total number of queries eligible to be
run in parallel. The optimizer determines the best plan, deciding whether
a query should be run serially or in parallel and how many worker
processes should be used for parallel queries.

“WP Adjustments Made” reports how many times the number of worker
processes recommended by the optimizer had to be adjusted at runtime.
Two possible causes are reported:

• “Due to WP Limit” indicates the number of times the number of
worker processes for a cached query plan was adjusted due to a
session-level limit set with set parallel_degree or
set scan_parallel_degree.

If “Due to WP Limit” is a nonzero value, look for applications that set
session-level limits.

• “Due to No WPs” indicates the number of requests for which the
number of worker processes was reduced due to lack of available
worker processes. These queries may run in serial, or they may run in
parallel with fewer worker processes than recommended by the
optimizer. It could mean that queries are running with poorly-
optimized plans.

CHAPTER 38 Monitoring Performance with sp_sysmon

913

If “Due to No WPs” is a nonzero value, and the sample was taken at
a time of typical load on your system, you may want to increase the
number of worker processes configuration parameter or set session-
level limits for some queries.

Running sp_showplan on the fid (family ID) of a login using an
adjusted plan shows only the cached plan, not the adjusted plan.

If the login is running an adjusted plan, sp_who shows a different
number of worker processes for the fid than the number indicated by
sp_showplan results.

Merge lock requests
“Merge Lock Requests” reports the number of parallel merge lock
requests that were made, how many were granted immediately, and how
many had to wait for each type of merge. The three merge types are:

• “Network Buffer Merge Locks”–reports contention for the network
buffers that return results to clients.

• “Result Buffer Merge Locks”–reports contention for the result buffers
used to process results for ungrouped aggregates and nonsorted, non
aggregate variable assignment results.

• “Work Table Merge Locks”–reports contention for locks while results
from work tables were being merge.

“Total # of Requests” prints the total of the three types of merge requests.

Sort buffer waits
This section reports contention for the sort buffers used for parallel sorts.
Parallel sort buffers are used by:

• Producers – the worker processes returning rows from parallel scans

• Consumers – the worker processes performing the parallel sort

If the number of waits is high, you can configure number of sort buffers to
a higher value.

See “Sort buffer configuration guidelines” on page 593 for guidelines.

Task management

914

Task management
“Task Management” provides information on opened connections, task
context switches by engine, and task context switches by cause.

Sample output
The following sample shows sp_sysmon output for the “Task
Management” categories.

 Task Management per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Connections Opened 0.0 0.0 0 n/a

 Task Context Switches by Engine
 Engine 0 94.8 0.8 5730 10.6 %
 Engine 1 94.6 0.8 5719 10.6 %
 Engine 2 92.8 0.8 5609 10.4 %
 Engine 3 105.0 0.9 6349 11.7 %
 Engine 4 101.8 0.8 6152 11.4 %
 Engine 5 109.1 0.9 6595 12.2 %
 Engine 6 102.6 0.9 6201 11.4 %
 Engine 7 99.0 0.8 5987 11.1 %
 Engine 8 96.4 0.8 5830 10.8 %
 ------------------------- --------- --------- -------
 Total Task Switches: 896.1 7.5 54172

 Task Context Switches Due To:
 Voluntary Yields 69.1 0.6 4179 7.7 %
 Cache Search Misses 56.7 0.5 3428 6.3 %
 System Disk Writes 1.0 0.0 62 0.1 %
 I/O Pacing 11.5 0.1 695 1.3 %
 Logical Lock Contention 3.7 0.0 224 0.4 %
 Address Lock Contention 0.0 0.0 0 0.0 %
 Latch Contention 0.1 0.6 17 0.0 %
 Log Semaphore Contention 51.0 0.4 3084 5.7 %
 PLC Lock Contention 0.0 0.0 2 0.0 %
 Group Commit Sleeps 82.2 0.7 4971 9.2 %
 Last Log Page Writes 69.0 0.6 4172 7.7 %
 Modify Conflicts 83.7 0.7 5058 9.3 %
 I/O Device Contention 6.4 0.1 388 0.7 %
 Network Packet Received 120.0 1.0 7257 13.4 %
 Network Packet Sent 120.1 1.0 7259 13.4 %
 Other Causes 221.6 1.8 13395 24.7 %

CHAPTER 38 Monitoring Performance with sp_sysmon

915

Connections opened
“Connections Opened” reports the number of connections opened to
Adaptive Server. It includes any type of connection, such as client
connections and remote procedure calls. It counts only connections that
were started during the sample interval.

Connections that were established before the interval started are not
counted, although they may be active and using resources.

This provides a general understanding of the Adaptive Server environment
and the work load during the interval. This data can also be useful for
understanding application behavior – it can help determine if applications
repeatedly open and close connections or perform multiple transactions
per connection.

See “Transaction profile” on page 933 for information about committed
transactions.

Task context switches by engine
“Task Context Switches by Engine” reports the number of times each
Adaptive Server engine switched context from one user task to another.
“% of total” reports the percentage of engine task switches for each
Adaptive Server engine as a percentage of the total number of task
switches for all Adaptive Server engines combined.

“Total Task Switches” summarizes task-switch activity for all engines on
SMP servers. You can use “Total Task Switches” to observe the effect of
re configurations. You might reconfigure a cache or add memory if tasks
appear to block on cache search misses and to be switched out often. Then,
check the data to see if tasks tend to be switched out more or less often.

Task context switches due to
“Task Context Switches Due To” reports the number of times that
Adaptive Server switched context for a number of common reasons. “% of
total” reports the percentage of times the context switch was due to each
specific cause as a percentage of the total number of task context switches
for all Adaptive Server engines combined.

Task management

916

“Task Context Switches Due To” provides an overview of the reasons that
tasks were switched off engines. The possible performance problems
shown in this section can be investigated by checking other sp_sysmon
output, as indicated in the sections that describe the causes.

For example, if most of the task switches are caused by physical I/O, try
minimizing physical I/O by adding more memory or re configuring
caches. However, if lock contention causes most of the task switches,
check the locking section of your report.

See “Lock management” on page 958 for more information.

Voluntary yields

“Voluntary Yields” reports the number of times a task completed or
yielded after running for the configured amount of time. The Adaptive
Server engine switches context from the task that yielded to another task.

The configuration parameter time slice sets the amount of time that a
process can run. A CPU-intensive task that does not switch out due to
other causes yields the CPU at certain “yield points” in the code, in order
to allow other processes a turn on the CPU.

See “Scheduling client task processing time” on page 30 for more
information.

A high number of voluntary yields indicates that there is little contention.

Cache search misses

“Cache Search Misses” reports the number of times a task was switched
out because a needed page was not in cache and had to be read from disk.
For data and index pages, the task is switched out while the physical read
is performed.

See “Data cache management” on page 967 for more information about
the cache-related parts of the sp_sysmon output.

System disk writes

“System Disk Writes” reports the number of times a task was switched out
because it needed to perform a disk write or because it needed to access a
page that was being written by another process, such as the housekeeper
or the checkpoint process.

CHAPTER 38 Monitoring Performance with sp_sysmon

917

Most Adaptive Server writes happen asynchronously, but processes sleep
during writes for page splits, recovery, and OAM page writes.

If “System Disk Writes” seems high, check the value for page splits to see
if the problem is caused by data page and index page splits.

See “Page splits” on page 949 for more information.

If the high value for system disk writes is not caused by page splitting, you
cannot affect this value by tuning.

I/O pacing

“I/O Pacing” reports how many times an I/O-intensive task was switched
off an engine due to exceeding an I/O batch limit. Adaptive Server paces
disk writes to keep from flooding the disk I/O subsystems during certain
operations that need to perform large amounts of I/O.

Two examples are the checkpoint process and transaction commits that
write a large number of log pages. The task is switched out and sleeps until
the batch of writes completes and then wakes up and issues another batch.

By default, the number of writes per batch is set to 10. You may want to
increase the number of writes per batch if:

• You have a high-throughput, high-transaction environment with a
large data cache

• Your system is not I/O bound

Valid values are from 1 to 50. This command sets the number of writes per
batch to 20:

dbcc tune (maxwritedes, 20)

Logical lock contention

“Logical Lock Contention” reports the number of times a task was
switched out due to contention for locks on tables, data pages, or data
rows.

Investigate lock contention problems by checking the transaction detail
and lock management sections of the report.

• See “Transaction detail” on page 936 and “Lock management” on
page 958.

Task management

918

• Check to see if your queries are doing deferred and direct expensive
updates, which can cause additional index locks.

See “Updates” on page 938.

• Use sp_object_stats to report information on a per-object basis.

See “Identifying tables where concurrency is a problem” on page
268.

For additional help on locks and lock contention, check the following
sources:

• “Types of Locks” in the System Administration Guide provides
information about types of locks to use at server or query level.

• “Reducing lock contention” on page 222 provides pointers on
reducing lock contention.

• Chapter 8, “Indexing for Performance,” provides information on
indexes and query tuning. In particular, use indexes to ensure that
updates and deletes do not lead to table scans and exclusive table
locks.

Address lock contention

“Address Lock Contention” reports the number of times a task was
switched out because of address locks. Adaptive Server acquires address
locks on index pages of allpages-locked tables. Address lock contention
blocks access to data pages.

Latch contention

“Latch Contention” reports the number of times a task was switched out
because it needed to wait for a latch.

If your user tables use only allpages-locking, this latch contention is taking
place either on a data-only-locked system table or on allocation pages.

If your applications use data-only-locking, the contention reported here
includes all waits for latches, including those on index pages and OAM
pages as well as allocation pages.

CHAPTER 38 Monitoring Performance with sp_sysmon

919

Reducing contention during page allocation

In SMP environments where inserts and expanding updates are extremely
high, so that page allocations take place very frequently, contention for the
allocation page latch can reduce performance. Normally, Adaptive Server
allocates new pages for an object on an allocation unit that is already in use
by the object and known to have free space.

For each object, Adaptive Server tracks this allocation page number as a
hint for any tasks that need to allocate a page for that object. When more
than one task at a time needs to allocate a page on the same allocation unit,
the second and subsequent tasks block on the latch on the allocation page.

You can specify a “greedy allocation” scheme, so that Adaptive Server
keeps a list of eight allocation hints for page allocations for a table.

This command enables greedy allocation for the salesdetail table in
database 6:

dbcc tune(des_greedyalloc, 6, salesdetail, "on")

To turn it off, use:

dbcc tune(des_greedyalloc, 6, salesdetail, "off")

The effect of dbcc tune(des_greedyalloc) are not persistent, so you need to
reissue the commands after a reboot.

You should use this command only if all of the following are true:

• You have multiple engines. It is rarely useful with fewer than four
engines.

• A large number of pages are being allocated for the object. You can
use sp_spaceused or optdiag to track the number of pages.

• The latch contention counter shows contention.

Greedy allocation is more useful when tables are assigned to their own
segments. If you enable greedy allocation for several tables on the same
segment, the same allocation hint could be used for more than one table.
Hints are unique for each table, but uniqueness is not enforced across all
tables.

Greedy allocation is not allowed in the master and tempdb databases, and
is not allowed on system tables.

Task management

920

Log semaphore contention

“Log Semaphore Contention” reports the number of times a task was
switched out because it needed to acquire the transaction log semaphore
held by another task. This applies to SMP systems only.

If log semaphore contention is high, see “Transaction management” on
page 940.

Check disk queuing on the disk used by the transaction log.

See “Disk I/O management” on page 988.

Also see “Engine busy utilization” on page 903. If engine utilization
reports a low value, and response time is within acceptable limits, consider
reducing the number of engines. Running with fewer engines reduces
contention by decreasing the number of tasks trying to access the log
simultaneously.

PLC lock contention

“PLC Lock Contention” reports contention for a lock on a user log cache.

Group commit sleeps

“Group Commit Sleeps” reports the number of times a task performed a
transaction commit and was put to sleep until the log was written to disk.

Compare this value to the number of committed transactions, reported in
“Transaction profile” on page 933. If the transaction rate is low, a higher
percentage of tasks wait for “Group Commit Sleeps.”

If there are a significant number of tasks resulting in “Group Commit
Sleeps,” and the log I/O size is greater than 2K, a smaller log I/O size can
help to reduce commit time by causing more frequent page flushes.
Flushing the page wakes up tasks sleeping on the group commit.

In high throughput environments, a large log I/O size helps prevent
problems in disk queuing on the log device. A high percentage of group
commit sleeps should not be regarded as a problem.

Other factors that can affect group commit sleeps are the number of tasks
on the run queue and the speed of the disk device on which the log resides.

CHAPTER 38 Monitoring Performance with sp_sysmon

921

When a task commits, its log records are flushed from its user log cache to
the current page of the transaction log in cache. If the log page (or pages,
if a large log I/O size is configured) is not full, the task is switched out and
placed on the end of the run queue. The log write for the page is performed
when:

• Another process fills the log page(s), and flushes the log

• When the task reaches the head of the run queue, and no other process
has flushed the log page

For more information, see “Choosing the I/O size for the transaction log”
on page 322.

Last log page writes

“Last Log Page Writes” reports the number of times a task was switched
out because it was put to sleep while writing the last log page.

The task switched out because it was responsible for writing the last log
page, as opposed to sleeping while waiting for some other task to write the
log page, as described in “Group commit sleeps” on page 920.

If this value is high, review “Avg # writes per log page” on page 946 to
determine whether Adaptive Server is repeatedly writing the same last
page to the log. If the log I/O size is greater than 2K, reducing the log I/O
size might reduce the number of unneeded log writes.

Modify conflicts

“Modify Conflicts” reports the number of times that a task tried to get
exclusive access to a page that was held by another task under a special
lightweight protection mechanism. For certain operations, Adaptive
Server uses a lightweight protection mechanism to gain exclusive access
to a page without using actual page locks. Examples are access to some
system tables and dirty reads. These processes need exclusive access to the
page, even though they do not modify it.

I/O device contention

“I/O Device Contention” reports the number of times a task was put to
sleep while waiting for a semaphore for a particular device.

Task management

922

When a task needs to perform physical I/O, Adaptive Server fills out the
I/O structure and links it to a per-engine I/O queue. If two Adaptive Server
engines request an I/O structure from the same device at the same time,
one of them sleeps while it waits for the semaphore.

If there is significant contention for I/O device semaphores, try reducing it
by redistributing the tables across devices or by adding devices and
moving tables and indexes to them.

See “Spreading data across disks to avoid I/O contention” on page 79 for
more information.

Network packet received

When task switching is reported by “Network Packet Received,” the task
switch is due to one of these causes:

• A task received part of a multi packet batch and was switched out
waiting for the client to send the next packet of the batch, or

• A task completely finished processing a command and was put into a
receive sleep state while waiting to receive the next command or
packet from the client.

If “Network Packet Received” is high, see “Network I/O management” on
page 993 for more information about network I/O. Also, you can configure
the network packet size for all connections or allow certain connections to
log in using larger packet sizes.

See “Changing network packet sizes” on page 16 and the System
Administration Guide.

Network packet sent

“Network Packet Sent” reports the number of times a task went into a send
sleep state while waiting for the network to send each packet to the client.
The network model determines that there can be only one outstanding
packet per connection at any one point in time. This means that the task
sleeps after each packet it sends.

If there is a lot of data to send, and the task is sending many small packets
(512 bytes per packet), the task could end up sleeping a number of times.
The data packet size is configurable, and different clients can request
different packet sizes.

CHAPTER 38 Monitoring Performance with sp_sysmon

923

For more information, see “Changing network packet sizes” on page 16
and the System Administration Guide.

If “Network Packet Sent” is a major cause of task switching, see “Network
I/O management” on page 993 for more information.

Other causes

“Other Causes” reports the number of tasks switched out for any reasons
not described above. In a well-tuned server, this value may rise as tunable
sources of task switching are reduced.

Application management
“Application Management” reports execution statistics for user tasks. This
section is useful if you use resource limits, or if you plan to tune
applications by setting execution attributes and assigning engine affinity.
Before making any adjustments to applications, logins, or stored
procedures, run sp_sysmon during periods of typical load, and familiarize
yourself with the statistics in this section.

For related background information, see Chapter 4, “Distributing Engine
Resources.”

Requesting detailed application information
If you request information about specific tasks using the third sp_sysmon
parameter, sp_sysmon output gives statistics specific to each application
individually in addition to summary information. You can choose to
display detailed application information in one of two ways:

• Application and login information (using the sp_sysmon parameter
appl_and_login) – sp_sysmon prints a separate section for each login
and the applications it is executing.

• Application information only (using the sp_sysmon parameter,
appl_only) – sp_sysmon prints a section for each application, which
combines data for all of the logins that are executing it.

Application management

924

For example, if 10 users are logged in with isql, and 5 users are logged in
with an application called sales_reports, requesting “application and
login” information prints 15 detail sections. Requesting “application only”
information prints 2 detail sections, one summarizing the activity of all isql
users, and the other summarizing the activity of the sales_reports users.

See “Specifying the application detail parameter” on page 897 for
information on specifying the parameters for sp_sysmon.

Sample output
The following sample shows sp_sysmon output for the “Application
Management” categories in the summary section.

Application Management

 Application Statistics Summary (All Applications)

 Priority Changes per sec per xact count % of total
 ------------------ ---------- ----------- ---------- ----------
 To High Priority 15.7 1.8 5664 49.9 %
 To Medium Priority 15.8 1.8 5697 50.1 %
 To Low Priority 0.0 0.0 0 0.0 %
 -------------------- ---------- ---------- ----------
 Total Priority Changes 31.6 3.5 11361

 Allotted Slices Exhausted per sec per xact count % of total
 ------------------------- ------- ---------- ---------- ----------
 High Priority 0.0 0.0 0 0.0 %
 Medium Priority 7.0 0.8 2522 100.0 %
 Low Priority 0.0 0.0 0 0.0 %
 ---------------------- --------- ---------- ----------
 Total Slices Exhausted 7.0 0.8 2522

 Skipped Tasks By Engine per sec per xact count % of total
 ---------------------- ---------- ---------- ---------
 Total Engine Skips 0.0 0.0 0 n/a

 Engine Scope Changes 0.0 0.0 0 n/a

The following example shows output for application and login; only the
information for one application and login is included. The first line
identifies the application name (before the arrow) and the login name
(after the arrow).

CHAPTER 38 Monitoring Performance with sp_sysmon

925

 Application->Login: ctisql->adonis

 Application Activity per sec per xact count % of total
 ---------------------- ---------- --------- -------- ----------
 CPU Busy 0.1 0.0 27 2.8 %
 I/O Busy 1.3 0.1 461 47.3 %
 Idle 1.4 0.2 486 49.9 %

Number of Times Scheduled 1.7 0.2 597 n/a

 Application Priority Changes per sec per xact count % of total
 ------------------------- ---------- --------- ------- ----------
 To High Priority 0.2 0.0 72 50.0 %
 To Medium Priority 0.2 0.0 72 50.0 %
 To Low Priority 0.0 0.0 0 0.0 %
 ------------------------ ----------- --------- -------
 Total Priority Changes 0.4 0.0 144

 Application I/Os Completed per sec per xact count % of total
 ------------------------- --------- ---------- -------- ----------
 Disk I/Os Completed 0.6 0.1 220 53.9 %
 Network I/Os Completed 0.5 0.1 188 46.1 %
 ------------------------- ------------ ------- --------
 Total I/Os Completed 1.1 0.1 408

 Resource Limits Violated per sec per xact count % of total
 ------------------------ -------- ---------- ------ -----------
 IO Limit Violations
 Estimated 0.0 0.0 0 0.0 %
 Actual 0.1 4.0 4 50.0 %
 Time Limit Violations
 Batch 0.0 0.0 0 0.0 %
 Xact 0.0 0.0 0 0.0 %
 RowCount Limit Violations 0.1 4.0 4 50.0 %

---------------------------- -------- --------- -------
 Total Limits Violated 0.1 8.0 8

Application statistics summary (all applications)
The sp_sysmon statistics in the summary section can help you determine
whether there are any anomalies in resource utilization. If there are, you
can investigate further using the detailed report.

Application management

926

This section gives information about:

• Whether tasks are switching back and forth between different priority
levels

• Whether the assigned time that tasks are allowed to run is appropriate

• Whether tasks to which you have assigned low priority are getting
starved for CPU time

• Whether engine bindings with respect to load balancing is correct

Note that “Application Statistics Summary” includes data for system tasks
as well as for user tasks. If the summary report indicates a resource issue,
but you do not see supporting evidence in the application or application
and login information, investigate the sp_sysmon kernel section of the
report (“Kernel utilization” on page 902).

Priority changes

“Priority Changes” reports the priority changes that took place for all user
tasks in each priority run queue during the sample interval. It is normal to
see some priority switching due to system-related activity. Such priority
switching occurs, for example, when:

• A task sleeps while waiting on a lock – Adaptive Server temporarily
raises the task’s priority.

• The housekeeper task sleeps – Adaptive Server raises the priority to
medium while the housekeeper sleeps, and changes it back to low
when it wakes up.

• A task executes a stored procedure – the task assumes the priority of
the stored procedure and resumes its previous priority level after
executing the procedure.

If you are using logical process management and there are a high number
of priority changes compared to steady state values, it may indicate that an
application, or a user task related to that application, is changing priorities
frequently. Check priority change data for individual applications. Verify
that applications and logins are behaving as you expect.

If you determine that a high-priority change rate is not due to an
application or to related tasks, then it is likely due to system activity.

CHAPTER 38 Monitoring Performance with sp_sysmon

927

Total priority changes

“Total Priority Changes” reports the total number of priority changes
during the sample period. This section gives you a quick way to determine
if there are a high number of run queue priority changes occurring.

Allotted slices exhausted

“Allotted Slices Exhausted” reports the number of times user tasks in each
run queue exceeded the time allotted for execution. Once a user task gains
access to an engine, it is allowed to execute for a given period of time. If
the task has not yielded the engine before the time is exhausted, Adaptive
Server requires it to yield as soon as possible without holding critical
resources. After yielding, the task is placed back on the run queue.

This section helps you to determine whether there are CPU-intensive
applications for which you should tune execution attributes or engine
associations. If these numbers are high, it indicates that an application is
CPU intensive. Application-level information can help you figure out
which application to tune. Some tasks, especially those which perform
large sort operations, are CPU intensive.

Skipped tasks by engine

“Skipped Tasks By Engine” reports the number of times engines skipped
a user task at the head of a run queue. This happens when the task at the
head of the run queue has affinity to an engine group and was bypassed in
the queue by an engine that is not part of the engine group.

The value is affected by configuring engine groups and engine group
bindings. A high number in this category might be acceptable if low
priority tasks are bypassed for more critical tasks. It is possible that an
engine group is bound so that a task that is ready to run might not be able
to find a compatible engine. In this case, a task might wait to execute while
an engine sits idle. Investigate engine groups and how they are bound, and
check load balancing.

Engine scope changes

“Engine Scope Changes” reports the number of times a user changed the
engine group binding of any user task during the sample interval.

Application management

928

Per application or per application and login
This section gives detailed information about system resource used by
particular application and login tasks, or all users of each application.

Application activity

“Application Activity” helps you to determine whether an application is
I/0 intensive or CPU intensive. It reports how much time all user task in
the application spend executing, doing I/O, or being idle. It also reports the
number of times a task is scheduled and chosen to run.

CPU busy

“CPU Busy” reports the number of clock ticks during which the user task
was executing during the sample interval. When the numbers in this
category are high, it indicates a CPU- bound application. If this is a
problem, engine binding might be a solution.

I/O busy

“I/O Busy” reports the number of clock ticks during which the user task
was performing I/O during the sample interval. If the numbers in this
category are high, it indicates an I/O-intensive process. If idle time is also
high, the application could be I/O bound.

The application might achieve better throughput if you assign it a higher
priority, bind it to a lightly loaded engine or engine group, or partition the
application’s data onto multiple devices.

Idle

“Idle” reports the number of clock ticks during which the user task was
idle during the sample interval.

Number of times scheduled

“Number of Times Scheduled” reports the number of times a user task is
scheduled and chosen to run on an engine. This data can help you
determine whether an application has sufficient resources. If this number
is low for a task that normally requires substantial CPU time, it may
indicate insufficient resources. Consider changing priority in a loaded
system with sufficient engine resources.

CHAPTER 38 Monitoring Performance with sp_sysmon

929

Application priority changes

“Application Priority Changes” reports the number of times this
application had its priority changed during the sample interval.

When the “Application Management” category indicates a problem, use
this section to pinpoint the source.

Application I/Os completed

“Application I/Os Completed” reports the disk and network I/Os
completed by this application during the sample interval.

This category indicates the total number of disk and network I/Os
completed.

If you suspect a problem with I/O completion, see “Disk I/O
management” on page 988 and “Network I/O management” on page 993.

Resource limits violated

“Resource Limits Violated” reports the number and types of violations for:

• I/O Limit Violations–Estimated and Actual

• Time Limits–Batch and Transaction

• RowCount Limit Violations

• “Total Limits Violated”

If no limits are exceeded during the sample period, only the total line is
printed.

See the System Administration Guide for more information on resource
limits.

ESP management
This section reports on the use of extended stored procedures.

Housekeeper task activity

930

Sample output
ESP Management per sec per xact count % of total
--------------------- ---------- ---------- -------- --------
 ESP Requests 0.0 0.0 7 n/a
 Avg. Time to Execute an ESP 2.07000 seconds

ESP requests

“ESP Requests” reports the number of extended stored procedure calls
during the sample interval.

Avg. time to execute an ESP

“Avg. Time to Execute an ESP” reports the average length of time for all
extended stored procedures executed during the sample interval.

Housekeeper task activity
The “Housekeeper Tasks Activity” section reports on housekeeper tasks.
If the configuration parameter housekeeper free write percent is set to 0, the
housekeeper task does not run. If housekeeper free write percent is 1 or
greater, space reclamation can be enabled separately by setting enable
housekeeper GC to 1, or disabled by setting it to 0.

Sample output
Housekeeper Task Activity

 per sec per xact count % of total
 ------------ ------------ ----------
Buffer Cache Washes
 Clean 63.6 3.8 38163 96.7 %
 Dirty 2.1 0.1 1283 3.3 %
 ------------ ------------ ----------
Total Washes 65.7 3.9 39446

Garbage Collections 3.7 0.2 2230 n/a
Pages Processed in GC 0.0 0.0 1 n/a
Statistics Updates 3.7 0.2 2230 n/a

CHAPTER 38 Monitoring Performance with sp_sysmon

931

Buffer cache washes
This section reports:

• The number of buffers examined by the housekeeper

• The number that were found clean

• The number that were found dirty

The number of dirty buffers includes those already in I/O due to writes
being started at the wash marker.

The “Recovery Management” section of sp_sysmon reports how many
times the housekeeper task was able to write all dirty buffers for a
database.

See“Recovery management” on page 984.

Garbage collections
This section reports the number of times the housekeeper task checked to
determine whether there were committed deletes that indicated that there
was space that could be reclaimed on data pages.

“Pages Processed in GC” reports the number of pages where the
housekeeper task succeeded in reclaiming unused space on the a page of a
data-only-locked table.

Statistics updates
“Statistics Updates” reports on the number of times the housekeeper task
checked to see if statistics needed to be written.

Monitor access to executing SQL
This section reports:

• Contention that occurs when sp_showplan or Adaptive Server
Monitor accesses query plans

Monitor access to executing SQL

932

• The number of overflows in SQL batch text buffers and the maximum
size of SQL batch text sent during the sample interval

Sample output
Monitor Access to Executing SQL

 per sec per xact count % of total
 --------- --------- ------- ----------
 Waits on Execution Plans 0.1 0.0 5 n/a
 Number of SQL Text Overflows 0.0 0.0 1 n/a
 Maximum SQL Text Requested n/a n/a 4120 n/a
 (since beginning of sample)

Waits on execution plans

“Waits on Execution Plans” reports the number of times that a process
attempting to use sp_showplan had to wait to acquire read access to the
query plan. Query plans may be unavailable if sp_showplan is run before
the compiled plan is completed or after the query plan finished executing.
In these cases, Adaptive Server tries to access the plan three times and then
returns a message to the user.

Number of SQL text overflows

“Number of SQL Text Overflows” reports the number of times that SQL
batch text exceeded the text buffer size.

Maximum SQL text requested

“Maximum SQL Text Requested” reports the maximum size of a batch of
SQL text since the sample interval began. You can use this value to set the
configuration parameter max SQL text monitored.

See the System Administration Guide.

CHAPTER 38 Monitoring Performance with sp_sysmon

933

Transaction profile
The “Transaction Profile” section reports on data modifications by type of
command and table locking scheme.

Sample output
The following sample shows sp_sysmon output for the “Transaction
Profile” section.

Transaction Profile

 Transaction Summary per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Committed Xacts 16.5 n/a 9871 n/a

 Transaction Detail per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Inserts
 APL Heap Table 229.8 14.0 137900 98.6 %
 APL Clustered Table 2.5 0.2 1511 1.1 %
 Data Only Lock Table 0.9 0.1 512 0.4 %
 ------------------------- --------- --------- ------- ----------
 Total Rows Inserted 233.2 14.2 139923 91.5 %

 Updates
 APL Deferred 0.5 0.0 287 2.3 %
 APL Direct In-place 0.0 0.0 15 0.1 %
 APL Direct Cheap 0.0 0.0 3 0.0 %
 APL Direct Expensive 0.0 0.0 0 0.0 %
 DOL Deferred 0.4 0.0 255 2.1 %
 DOL Direct 19.7 1.2 11802 95.5 %
 ------------------------- --------- --------- ------- ----------
 Total Rows Updated 20.6 1.3 12362 8.1 %

 Data Only Locked Updates
 DOL Replace 19.6 1.2 11761 97.6 %
 DOL Shrink 0.0 0.0 1 0.0 %
 DOL Cheap Expand 0.3 0.0 175 1.5 %
 DOL Expensive Expand 0.2 0.0 101 0.8 %
 DOL Expand & Forward 0.0 0.0 18 0.1 %
 DOL Fwd Row Returned 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- ------- ----------
 Total DOL Rows Updated 20.1 1.2 12056 7.9 %

Transaction profile

934

 Deletes
 APL Deferred 0.5 0.0 308 48.4 %
 APL Direct 0.0 0.0 9 1.4 %
 DOL 0.5 0.0 320 50.2 %
 ------------------------- --------- --------- ------- ----------
 Total Rows Deleted 1.1 0.1 637 0.4 %
 ========================= ========= ========= =======
 Total Rows Affected 254.9 15.5 152922

Transaction summary
“Transaction Summary” reports committed transactions. “Committed
Xacts” reports the number of transactions committed during the sample
interval.

The count of transactions includes transactions that meet explicit, implicit,
and ANSI definitions for “committed”, as described here:

• An implicit transaction executes data modification commands such as
insert, update, or delete. If you do not specify a begin transaction
statement, Adaptive Server interprets every operation as a separate
transaction; an explicit commit transaction statement is not required.
For example, the following is counted as three transactions.

1> insert …
2> go
1> insert …
2> go
1> insert …
2> go

• An explicit transaction encloses data modification commands within
begin transaction and commit transaction statements and counts the
number of transactions by the number of commit statements. For
example the following set of statements is counted as one transaction:

1> begin transaction
2> insert …
3> insert …
4> insert …
5> commit transaction
6> go

CHAPTER 38 Monitoring Performance with sp_sysmon

935

• In the ANSI transaction model, any select or data modification
command starts a transaction, but a commit transaction statement must
complete the transaction. sp_sysmon counts the number of
transactions by the number of commit transaction statements. For
example, the following set of statements is counted as one transaction:

1> insert …
2> insert …
3> insert …
4> commit transaction
5> go

If there were transactions that started before the sample interval began and
completed during the interval, the value reports a larger number of
transactions than the number that started and completed during the sample
interval. If transactions do not complete during the interval, “Total # of
Xacts” does not include them. In Figure 38-1, both T1 and T2 are counted,
but T3 is not.

Figure 38-1: How transactions are counted

How to count multi database transactions

Multi database transactions are also counted. For example, a transaction
that modifies three databases is counted as three transactions.

Multi database transactions incur more overhead than single database
transactions: they require more log records and more ULC flushes, and
they involve two-phase commit between the databases.

You can improve performance by reducing the number of multi database
transactions whenever possible.

T1

T2
T3

Interval

Transaction profile

936

Transaction detail
“Transaction Detail” gives statistical detail about data modification
operations by type. The work performed by rolled back transactions is
included in the output below, although the transaction is not counted in the
number of transactions.

For the “Total Rows” for inserts, updates, and deletes, the “% of total”
column reports the percentage of the transaction type as a percentage of all
transactions.

See “Update mode messages” on page 773 for more information on
deferred and direct inserts, updates, and deletes.

In the output for this section, APL indicates allpages-locked tables and
DOL indicates data-only-locked tables.

Inserts
”Inserts” provides detailed information about the types of inserts taking
place on heap tables (including partitioned heap tables), clustered tables,
and all inserts as a percentage of all insert, update, and delete operations.
It displays the number of inserts performed on:

• Allpages-locked heap tables

• Allpages-locked tables with clustered indexes

• Data-only locked tables

Insert statistics do not include fast bulk copy inserts, because those are
written directly to the data pages and to disk without the normal insert and
logging mechanisms.

APL heap tables

“APL Heap Tables” reports the number of row inserts that took place on
allpages-locked heap tables—all tables that do not have a clustered index.
This includes:

• Partitioned heap tables

• Unpartitioned heap tables

• Slow bulk copy inserts into heap tables

• select into commands

CHAPTER 38 Monitoring Performance with sp_sysmon

937

• Inserts into worktables

The “% of total” column shows the percentage of row inserts into heap
tables as a percentage of the total number of inserts.

If there are a large number of inserts to heap tables, determine if these
inserts are generating contention.

Check the sp_sysmon report for data on last page locks on heaps in “Lock
detail” on page 962. If there appears to be a contention problem, Adaptive
Server Monitor can help you figure out which tables are involved.

In many cases, creating a clustered index that randomizes insert activity
solves the performance problems for heaps. In other cases, you might need
to establish partitions on an unpartitioned table or increase the number of
partitions on a partitioned table.

For more information, see Chapter 9, “How Indexes Work” and
“Improving insert performance with partitions” on page 88.

APL clustered table

“APL Clustered Table” reports the number of row inserts to allpages-
locked tables with clustered indexes. The “% of total” column shows the
percentage of row inserts to tables with clustered indexes as a percentage
of the total number of rows inserted.

Inserts into allpages-locked clustered tables can lead to page splitting.

See Row ID updates from clustered split and “Page splits” on page 949.

Data only lock table

“Data Only Lock Table” reports the number of inserts for all data-only-
locked tables. The “% of total” column shows the percentage of inserts to
data-only-locked tables as a percentage of all inserts.

Total rows inserted

“Total Rows Inserted” reports all row inserts to all tables combined. It
gives the average number of all inserts per second, the average number of
all inserts per transaction, and the total number of inserts. “% of total”
shows the percentage of rows inserted compared to the total number of
rows affected by data modification operations.

Transaction profile

938

Updates and update detail sections
The “Updates” report has two sections, “Updates” and “Data Only Locked
Updates.”

Updates

“Updates” reports the number of deferred and direct row updates. The “%
of total” column reports the percentage of each type of update as a
percentage of the total number of row updates. sp_sysmon reports the
following types of updates:

• APL Deferred

• APL Direct In-place

• APL Direct Cheap

• APL Direct Expensive

• DOL Deferred

• DOL Direct

Direct updates incur less overhead than deferred updates and are generally
faster because they limit the number of log scans, reduce locking, save
traversal of index B-trees (reducing lock contention), and can save I/O
because Adaptive Server does not have to refetch pages to perform
modification based on log records.

For a description of update types, see “How update operations are
performed” on page 464.

If there is a high percentage of deferred updates, see “Optimizing updates”
on page 472.

Total rows updated

“Total Rows Updated” reports all deferred and direct updates combined.
The “% of total” columns shows the percentage of rows updated, based on
all rows modified.

Data-only-locked updates

This section reports more detail on updates to data-only-locked tables:

• DOL Replace – The update did not change the length of the row; some
or all of the row was changed resulting in the same row length

CHAPTER 38 Monitoring Performance with sp_sysmon

939

• DOL Shrink – The update shortened the row, leaving non contiguous
empty space on the page to be collected during space reclamation.

• DOL Cheap Expand – The row grew in length; it was the last row on
the page, so expanding the length of the row did not require moving
other rows on the page.

• DOL Expensive Expand – The row grew in length and required
movement of other rows on the page.

• DOL Expand and Forward – The row grew in length, and did not fit
on the page. The row was forwarded to a new location.

• DOL Fwd Row Returned – The update affected a forwarded row; the
row fit on the page at its original location and was returned to that
page.

The total reported in “Total DOL Rows Updated” are not included in the
“Total Rows Affected” sum at the end of the section, since the updates in
this group are providing a different breakdown of the updates already
reported in “DOL Deferred” and “DOL Direct.”

Deletes
“Deletes” reports the number of deferred and direct row deletes from
allpages-locked tables. All deletes on data-only-locked tables are
performed by marking the row as deleted on the page, so the categories
“direct” and “deferred” do not apply. The “% of total” column reports the
percentage of each type of delete as a percentage of the total number of
deletes.

Total rows deleted

“Total Rows Deleted” reports all deferred and direct deletes combined.
The “% of total” columns reports the percentage of deleted rows as a
compared to all rows inserted, updated, or deleted.

Transaction management

940

Transaction management
“Transaction Management” reports transaction management activities,
including user log cache (ULC) flushes to transaction logs, ULC log
records, ULC semaphore requests, log semaphore requests, transaction log
writes, and transaction log allocations.

Sample output
The following sample shows sp_sysmon output for the “Transaction
Management” categories.

Transaction Management

 ULC Flushes to Xact Log per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 by Full ULC 0.0 0.0 0 0.0 %
 by End Transaction 120.1 1.0 7261 99.7 %
 by Change of Database 0.0 0.0 0 0.0 %
 by System Log Record 0.4 0.0 25 0.3 %
 by Other 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total ULC Flushes 120.5 1.0 7286

 ULC Log Records 727.5 6.1 43981 n/a
 Max ULC Size n/a n/a 532 n/a

ULC Semaphore Requests
 Granted 1452.3 12.1 87799 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total ULC Semaphore Req 1452.3 12.1 87799

 Log Semaphore Requests
 Granted 69.5 0.6 4202 57.7 %
 Waited 51.0 0.4 3084 42.3 %
 ------------------------- --------- --------- -------
 Total Log Semaphore Req 120.5 1.0 7286

CHAPTER 38 Monitoring Performance with sp_sysmon

941

 Transaction Log Writes 80.5 0.7 4867 n/a
 Transaction Log Alloc 22.9 0.2 1385 n/a
 Avg # Writes per Log Page n/a n/a 3.51408 n/a

ULC flushes to transaction log
“ULC Flushes to Xact Log” reports the total number of times that user log
caches (ULCs) were flushed to a transaction log. The “% of total” column
reports the percentage of times the type of flush took place, for each
category, as a percentage of the total number of ULC flushes. This
category can help you identify areas in the application that cause problems
with ULC flushes.

There is one user log cache (ULC) for each configured user connection.
Adaptive Server uses ULCs to buffer transaction log records. On both
SMP and single-processor systems, this helps reduce transaction log I/O.
For SMP systems, it reduces the contention on the current page of the
transaction log.

You can configure the size of ULCs with the configuration parameter user
log cache size.

See the System Administration Guide.

ULC flushes are caused by the following activities:

• “by Full ULC” – A process’s ULC becomes full.

• “by End Transaction” – A transaction ended (rollback or commit, either
implicit or explicit).

• “by Change of Database” – A transaction modified an object in a
different database (a multi database transaction).

• “by System Log Record” – A system transaction (such as an OAM
page allocation) occurred within the user transaction.

• “by Other” – Any other reason, including needing to write to disk.

When one of these activities causes a ULC flush, Adaptive Server copies
all log records from the user log cache to the database transaction log.

Transaction management

942

“Total ULC Flushes” reports the total number of all ULC flushes that took
place during the sample interval.

Note In databases with mixed data and log segments, the user log cache
is flushed after each record is added.

By full ULC

A high value for “by Full ULC” indicates that Adaptive Server is flushing
the ULCs more than once per transaction, negating some performance
benefits of user log caches. If the “% of total” value for “by Full ULC” is
greater than 20%, consider increasing the size of the user log cache size
parameter.

Increasing the ULC size increases the amount of memory required for
each user connection, so you do not want to configure the ULC size to suit
a small percentage of large transactions.

By end transaction

A high value for “by End Transaction” indicates a healthy number of short,
simple transactions.

By change of database

The ULC is flushed every time there is a database change. If this value is
high, consider decreasing the size of the ULC if it is greater than 2K.

By system log record and by other

If either of these values is higher than approximately 20%, and size of your
ULC is more than 2048, consider reducing the ULC size.

Check sections of your sp_sysmon report that relate to log activity:

• Contention for semaphore on the user log caches (SMP only); see
“ULC semaphore requests” on page 944

• Contention for the log semaphore. (SMP only); see “Log semaphore
requests” on page 944

• The number of transaction log writes; see “Transaction log writes” on
page 945

CHAPTER 38 Monitoring Performance with sp_sysmon

943

Total ULC flushes
“Total ULC Flushes” reports the total number of ULC flushes during the
sample interval.

ULC log records
This row provides an average number of log records per transaction. It is
useful in benchmarking or in controlled development environments to
determine the number of log records written to ULCs per transaction.

Many transactions, such as those that affect several indexes or deferred
updates or deletes, require several log records for a single data
modification. Queries that modify a large number of rows use one or more
records for each row.

If this data is unusual, study the data in the next section, Maximum ULC
size and look at your application for long-running transactions and for
transactions that modify large numbers of rows.

Maximum ULC size
The value in the “count” column is the maximum number of bytes used in
any ULCs, across all ULCs. This data can help you determine if ULC size
is correctly configured.

Since Adaptive Server flushes the ULC when a transaction completes, any
unused memory allocated to the ULCs is wasted. If the value in the
“count” column is consistently less than the defined value for the user log
cache size configuration parameter, reduce user log cache size to the value
in the “count” column (but no smaller than 2048 bytes).

When “Max ULC Size” equals the user log cache size, check the number
of flushes due to transactions that fill the user log cache (see “By full
ULC” on page 942). If the number of times that logs were flushed due to
a full ULC is more than 20%, consider increasing the user log cache size
configuration parameter.

See the System Administration Guide.

Transaction management

944

ULC semaphore requests
“ULC Semaphore Requests” reports the number of times a user task was
immediately granted a semaphore or had to wait for it. “% of total” shows
the percentage of tasks granted semaphores and the percentage of tasks
that waited for semaphores as a percentage of the total number of ULC
semaphore requests. This is relevant only in SMP environments.

A semaphore is a simple internal locking mechanism that prevents a
second task from accessing the data structure currently in use. Adaptive
Server uses semaphores to protect the user log caches since more than one
process can access the records of a ULC and force a flush.

This category provides the following information:

• Granted – The number of times a task was granted a ULC semaphore
immediately upon request. There was no contention for the ULC.

• Waited – The number of times a task tried to write to ULCs and
encountered semaphore contention.

• Total ULC Semaphore Requests – The total number of ULC
semaphore requests that took place during the interval. This includes
requests that were granted or had to wait.

Log semaphore requests
“Log Semaphore Requests” reports of contention for the log semaphore
that protects the current page of the transaction log in cache. This data is
meaningful for SMP environments only.

This category provides the following information:

• Granted – The number of times a task was granted a log semaphore
immediately after it requested one. “% of total” reports the percentage
of immediately granted requests as a percentage of the total number
of log semaphore requests.

• Waited – The number of times two tasks tried to flush ULC pages to
the log simultaneously and one task had to wait for the log semaphore.
“% of total” reports the percentage of tasks that had to wait for a log
semaphore as a percentage of the total number of log semaphore
requests.

CHAPTER 38 Monitoring Performance with sp_sysmon

945

• Total Log Semaphore Requests – The total number of times tasks
requested a log semaphore including those granted immediately and
those for which the task had to wait.

Log semaphore contention and user log caches

In high throughput environments with a large number of concurrent users
committing transactions, a certain amount of contention for the log
semaphore is expected. In some tests, very high throughput is maintained,
even though log semaphore contention is in the range of 20 to 30%.

Some options for reducing log semaphore contention are:

• Increasing the ULC size, if filling user log caches is a frequent cause
of user log cache flushes.

See “ULC flushes to transaction log” on page 941 for more
information.

• Reducing log activity through transaction redesign. Aim for more
batching with less frequent commits. Be sure to monitor lock
contention as part of the transaction redesign.

• Reducing the number of multi database transactions, since each
change of database context requires a log write.

• Dividing the database into more than one database so that there are
multiple logs. If you choose this solution, divide the database in such
a way that multi database transactions are minimized.

Transaction log writes
“Transaction Log Writes” reports the total number of times Adaptive
Server wrote a transaction log page to disk. Transaction log pages are
written to disk when a transaction commits (after a wait for a group
commit sleep) or when the current log page(s) become full.

Transaction log allocations
“Transaction Log Alloc” reports the number of times additional pages
were allocated to the transaction log. This data is useful for comparing to
other data in this section and for tracking the rate of transaction log
growth.

Index management

946

Avg # writes per log page
“Avg # Writes per Log Page” reports the average number of times each log
page was written to disk. The value is reported in the “count” column.

In high throughput applications, this number should be as low as possible.
If the transaction log uses 2K I/O, the lowest possible value is 1; with 4K
log I/O, the lowest possible value is .5, since one log I/O can write 2 log
pages.

In low throughput applications, the number will be significantly higher. In
very low throughput environments, it may be as high as one write per
completed transaction.

Index management
This category reports index management activity, including nonclustered
maintenance, page splits, and index shrinks.

Sample output
The following sample shows sp_sysmon output for the “Index
Management” categories.

Index Management

 Nonclustered Maintenance per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Ins/Upd Requiring Maint 20.4 1.2 12269 n/a
 # of NC Ndx Maint 5.9 0.4 3535 n/a
 Avg NC Ndx Maint / Op n/a n/a 0.28812 n/a

 Deletes Requiring Maint 20.4 1.2 12259 n/a
 # of NC Ndx Maint 5.9 0.4 3514 n/a
 Avg NC Ndx Maint / Op n/a n/a 0.28665 n/a

 RID Upd from Clust Split 0.0 0.0 0 n/a
 # of NC Ndx Maint 0.0 0.0 0 n/a

 Upd/Del DOL Req Maint 7.3 0.4 4351 n/a
 # of DOL Ndx Maint 4.7 0.3 2812 n/a

CHAPTER 38 Monitoring Performance with sp_sysmon

947

 Avg DOL Ndx Maint / Op n/a n/a 0.64629 n/a

 Page Splits 0.3 0.0 207 n/a
 Retries 0.0 0.0 1 0.5 %
 Deadlocks 0.0 0.0 0 0.0 %
 Add Index Level 0.0 0.0 0 0.0 %

 Page Shrinks 0.0 0.0 0 n/a

 Index Scans per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Ascending Scans 717.1 43.6 430258 90.6 %
 DOL Ascending Scans 74.3 4.5 44551 9.4 %
 Descending Scans 0.1 0.0 85 0.0 %
 DOL Descending Scans 0.0 0.0 6 0.0 %
 --------- --------- -------
 Total Scans 791.5 48.1 474900

Nonclustered maintenance
This category reports the number of operations that required, or potentially
required, maintenance to one or more indexes; that is, it reports the number
of operations for which Adaptive Server had to at least check to determine
whether it was necessary to update the index. The output also gives the
number of indexes that were updated and the average number of indexes
maintained per operation.

In tables with clustered indexes and one or more nonclustered indexes, all
inserts, all deletes, some update operations, and any data page splits,
require changes to the nonclustered indexes. High values for index
maintenance indicate that you should assess the impact of maintaining
indexes on your Adaptive Server performance. While indexes speed
retrieval of data, maintaining indexes slows data modification.
Maintenance requires additional processing, additional I/O, and additional
locking of index pages.

Other sp_sysmon output that is relevant to assessing this category is:

• Information on total updates, inserts and deletes, and information on
the number and type of page splits

See “Transaction detail” on page 936, and “Page splits” on page 949.

• Information on lock contention.

See “Lock detail” on page 962.

Index management

948

• Information on address lock contention.

See “Address lock contention” on page 918 and “Address locks” on
page 963.

For example, you can compare the number of inserts that took place with
the number of maintenance operations that resulted. If a relatively high
number of maintenance operations, page splits, and retries occurred,
consider the usefulness of indexes in your applications.

See Chapter 8, “Indexing for Performance,” for more information.

Inserts and updates requiring maintenance to indexes

The data in this section gives information about how insert and update
operations affect indexes on allpages-locked tables. For example, an insert
to a clustered table with three nonclustered indexes requires updates to all
three indexes, so the average number of operations that resulted in
maintenance to nonclustered indexes is three.

However, an update to the same table may require only one maintenance
operation—to the index whose key value was changed.

• “Ins/Upd Requiring Maint” reports the number of insert and update
operations to a table with indexes that potentially required
modifications to one or more indexes.

• “# of NC Ndx Maint” reports the number of nonclustered indexes that
required maintenance as a result of insert and update operations.

“Avg NC Ndx Maint/Op” reports the average number of nonclustered

indexes per insert or update operation that required maintenance.

For data-only-locked tables, inserts are reported in “Ins/Upd Requiring
Maint” and deletes and inserts are reported in “Upd/Del DOL Req Maint.”

Deletes requiring maintenance

The data in this section gives information about how delete operations
affected indexes on allpages-locked tables:

• “Deletes Requiring Maint” reports the number of delete operations
that potentially required modification to one or more indexes.

See “Deletes” on page 939.

CHAPTER 38 Monitoring Performance with sp_sysmon

949

• “# of NC Ndx Maint” reports the number of nonclustered indexes that
required maintenance as a result of delete operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered
indexes per delete operation that required maintenance.

Row ID updates from clustered split

This section reports index maintenance activity caused by page splits in
allpages-locked tables with clustered indexes. These splits require
updating the nonclustered indexes for all of the rows that move to the new
data page.

• “RID Upd from Clust Split” reports the total number of page splits
that required maintenance of a nonclustered index.

• “# of NC Ndx Maint” reports the number of nonclustered rows that
required maintenance as a result of row ID update operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered
indexes entries that were updated for each page split.

Data-Only-Locked updates and deletes requiring maintenance

The data in this section gives information about how updates and deletes
affected indexes on data-only-locked tables:

• “Upd/Del DOL Req Maint” reports the number of update and delete
operations that potentially required modification to one or more
indexes.

• “# of DOL Ndx Main” reports the number of indexes that required
maintenance as a result of update or delete operations.

• “Avg DOL Ndx Maint/Op” reports the average number of indexes per
update or delete operation that required maintenance.

Page splits
“Page Splits” reports the number page splits for data pages, clustered
index pages, or nonclustered index pages because there was not enough
room for a new row.

Index management

950

When a data row is inserted into an allpages-locked table with a clustered
index, the row must be placed in physical order according to the key value.
Index rows must also be placed in physical order on the pages. If there is
not enough room on a page for a new row, Adaptive Server splits the page,
allocates a new page, and moves some rows to the new page. Page splitting
incurs overhead because it involves updating the parent index page and the
page pointers on the adjoining pages and adds lock contention. For
clustered indexes, page splitting also requires updating all nonclustered
indexes that point to the rows on the new page.

See “Choosing space management properties for indexes” on page 189
for more information about how to temporarily reduce page splits using
fillfactor.

Reducing page splits for ascending key inserts

If “Page Splits” is high and your application is inserting values into an
allpages-locked table with a clustered index on a compound key, it may be
possible to reduce the number of page splits through a special optimization
that changes the page split point for these indexes.

The special optimization is designed to reduce page splitting and to result
in more completely filled data pages. This affects only clustered indexes
with compound keys, where the first key is already in use in the table, and
the second column is based on an increasing value.

Default data page splitting

The table sales has a clustered index on store_id, customer_id. There are
three stores (A, B, and C). Each store adds customer records in ascending
numerical order. The table contains rows for the key values A,1; A,2; A,3;
B,1; B,2; C,1; C,2; and C,3, and each page holds four rows, as shown in
Figure 38-2.

CHAPTER 38 Monitoring Performance with sp_sysmon

951

Figure 38-2: Clustered table before inserts

Using the normal page-splitting mechanism, inserting “A,4” results in
allocating a new page and moving half of the rows to it, and inserting the
new row in place, as shown in Figure 38-3.

Figure 38-3: Insert causes a page split

When “A,5” is inserted, no split is needed, but when “A,6” is inserted,
another split takes place, as shown in Figure 38-4.

Figure 38-4: Another insert causes another page split

Adding “A,7” and “A,8” results in yet another page split, as shown in
Figure 38-5.

Page 1007
A 1 ...
A 2 ...
A 3 ...
B 1 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...
B 1 ...

Index management

952

Figure 38-5: Page splitting continues

Effects of ascending inserts

You can set ascending inserts mode for a table, so that pages are split at the
point of the inserted row, rather than in the middle of the page. Starting
from the original table shown in Figure 38-2 on page 951, the insertion of
“A,4” results in a split at the insertion point, with the remaining rows on
the page moving to a newly allocated page, as shown in Figure 38-6.

Figure 38-6: First insert with ascending inserts mode

Inserting “A,5” causes a new page to be allocated, as shown in Figure 38-
7.

Figure 38-7: Additional ascending insert causes a page allocation

Adding “A,6”, “A,7”, and “A,8” fills the new page, as shown in Figure 38-
8.

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...

Page 1137
A 7 ...
A 8 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...

CHAPTER 38 Monitoring Performance with sp_sysmon

953

Figure 38-8: Additional inserts fill the new page

Setting ascending inserts mode for a table

The following command turns on ascending insert mode for the sales
table:

dbcc tune (ascinserts, 1, "sales")

To turn ascending insert mode off, use:

dbcc tune (ascinserts, 0, "sales")

These commands update the status2 bit of sysindexes.

If tables sometimes experience random inserts and have more ordered
inserts during batch jobs, it is better to enable dbcc tune (ascinserts) only
for the period during which the batch job runs.

Retries and deadlocks

“Deadlocks” reports the number of index page splits and shrinks that
resulted in deadlocks. Adaptive Server has a mechanism called deadlock
retries that attempts to avoid transaction rollbacks caused by index page
deadlocks. “Retries” reports the number of times Adaptive Server used
this mechanism.

Deadlocks on index pages take place when each of two transactions needs
to acquire locks held by the other transaction. On data pages, deadlocks
result in choosing one process (the one with the least accumulated CPU
time) as a deadlock victim and rolling back the process.

By the time an index deadlock takes place, the transaction has already
updated the data page and is holding data page locks so rolling back the
transaction causes overhead.

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...
A 6 ...
A 7 ...
A 8 ...

Index management

954

In a large percentage of index deadlocks caused by page splits and shrinks,
both transactions can succeed by dropping one set of index locks, and
restarting the index scan. The index locks for one of the processes are
released (locks on the data pages are still held), and Adaptive Server tries
the index scan again, traversing the index from the root page of the index.

Usually, by the time the scan reaches the index page that needs to be split,
the other transaction has completed, and no deadlock takes place. By
default, any index deadlock that is due to a page split or shrink is retried
up to five times before the transaction is considered deadlocked and is
rolled back.

For information on changing the default value for the number of deadlock
retries, see the System Administration Guide.

The deadlock retries mechanism causes the locks on data pages to be held
slightly longer than usual and causes increased locking and overhead.
However, it reduces the number of transactions that are rolled back due to
deadlocks. The default setting provides a reasonable compromise between
the overhead of holding data page locks longer and the overhead of rolling
back transactions that have to be reissued.

A high number of index deadlocks and deadlock retries indicates high
contention in a small area of the index B-tree.

If your application encounters a high number of deadlock retries, reduce
page splits using fillfactor when you re-create the index.

See “Reducing index maintenance” on page 271.

Add index level

“Add Index Level” reports the number of times a new index level was
added. This does not happen frequently, so you should expect to see result
values of 0 most of the time. The count could have a value of 1 or 2 if your
sample includes inserts into either an empty table or a small table with
indexes.

CHAPTER 38 Monitoring Performance with sp_sysmon

955

Page shrinks
“Page Shrinks” reports the number of times that deleting index rows
caused the index to shrink off a page. Shrinks incur overhead due to
locking in the index and the need to update pointers on adjacent pages.
Repeated “count” values greater than 0 indicate there may be many pages
in the index with fairly small numbers of rows per page due to delete and
update operations. If there are a high number of shrinks, consider
rebuilding the indexes.

Index scans
The “Index Scans” section reports forward and backward scans by lock
scheme:

• “Ascending Scans” reports the number of forward scans on allpages-
locked tables.

• “DOL Ascending Scans” reports the number of forward scans on
data-only-locked tables.

• “Descending Scans” reports the number of backward scans on
allpages-locked tables.

• “DOL Descending Scans” reports the number of backward scans on
data-only-locked tables.

For more information on forward and backward scans, see “Costing for
queries using order by” on page 449.

Metadata cache management
“Metadata Cache Management” reports the use of the metadata caches that
store information about the three types of metadata caches: objects,
indexes, and databases. This section also reports the number of object,
index and database descriptors that were active during the sample interval,
and the maximum number of descriptors that have been used since the
server was last started. It also reports spinlock contention for the object
and index metadata caches.

Metadata cache management

956

Sample output
Metadata Cache Management

 Metadata Cache Summary per sec per xact count % of total
 ------------------------ --------- --------- ------- ----------

 Open Object Usage
 Active 0.4 0.1 116 n/a
 Max Ever Used Since Boot 0.4 0.1 121 n/a
 Free 1.3 0.3 379 n/a
 Reuse Requests
 Succeeded 0.0 0.0 0 n/a
 Failed 0.0 0.0 0 n/a

 Open Index Usage
 Active 0.2 0.1 67 n/a
 Max Ever Used Since Boot 0.2 0.1 72 n/a
 Free 1.4 0.3 428 n/a
 Reuse Requests
 Succeeded 0.0 0.0 0 n/a
 Failed 0.0 0.0 0 n/a

 Open Database Usage
 Active 0.0 0.0 10 n/a
 Max Ever Used Since Boot 0.0 0.0 10 n/a
 Free 0.0 0.0 2 n/a
 Reuse Requests
 Succeeded 0.0 0.0 0 n/a
 Failed 0.0 0.0 0 n/a

 Object Spinlock Contention n/a n/a n/a 0.0 %

 Index Spinlock Contention n/a n/a n/a 1.0 %

 Hash Spinlock Contention n/a n/a n/a 1.0 %

Open object, index, and database usage
Each of these sections contains the same information for the three types of
metadata caches. The output provides this information:

CHAPTER 38 Monitoring Performance with sp_sysmon

957

• “Active” reports the number of objects, indexes, or databases that
were active during the sample interval.

• “Max Ever Used Since Boot” reports the maximum number of
descriptors used since the last restart of Adaptive Server.

• “Free” reports the number of free descriptors in the cache.

• “Reuse Requests” reports the number of times that the cache had to be
searched for reusable descriptors:

• “Failed” means that all descriptors in cache were in use and that
the client issuing the request received an error message.

• “Succeeded” means the request found a reusable descriptor in
cache. Even though “Succeeded” means that the client did not get
an error message, Adaptive Server is doing extra work to locate
reusable descriptors in the cache and to read metadata
information from disk.

You can use this information to set the configuration parameters number of
open indexes, number of open objects, and number of open databases, as
shown in Table 38-2.

Table 38-2: Action to take based on metadata cache usage
statistics

Object and index spinlock contention
These sections report on spinlock contention on the object descriptor and
index descriptor caches. You can use this information to tune the
configuration parameters open object spinlock ratio and open index spinlock
ratio. If the reported contention is more than 3%, decrease the value of the
corresponding parameter to lower the number of objects or indexes that
are protected by a single spinlock.

sp_sysmon output Action

Large number of “Free” descriptors Set parameter lower

Very few “Free” descriptors Set parameter higher

“Reuse Requests Succeeded” nonzero Set parameter higher

“Reuse Requests Failed” nonzero Set parameter higher

Lock management

958

Hash spinlock contention
This section reports contention for the spinlock on the index metadata
cache hash table. You can use this information to tune the open index hash
spinlock ratio configuration parameter. If the reported contention is greater
than 3%, decrease the value of the parameter.

Lock management
“Lock Management” reports locks, deadlocks, lock promotions, and lock
contention.

Sample output
The following sample shows sp_sysmon output for the “Lock
Management” categories.

Lock Management

 Lock Summary per sec per xact count % of total
 ----------------- ------------ ------------ ---------- ----------
 Total Lock Requests 2634.5 151.2 1580714 n/a
 Avg Lock Contention 2.4 0.1 1436 0.1 %
 Deadlock Percentage 0.0 0.0 1 0.0 %
 Lock Hashtable Lookups 8262.3 474.2 4957363 n/a
 Avg Hash Chain Length n/a n/a 0.01153 n/a

 Lock Detail per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------

 Exclusive Table
 Granted 403.7 4.0 24376 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Table Requests 0.0 0.0 0 0.0 %

 Shared Table
 Granted 325.2 4.0 18202 100.0 %
 Waited 0.0 0.0 0 0.0 %

CHAPTER 38 Monitoring Performance with sp_sysmon

959

 ------------------------- --------- --------- -------
 Total SH-Table Requests 0.0 0.0 0 0.0 %

 Exclusive Intent
 Granted 480.2 4.0 29028 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Intent Requests 480.2 4.0 29028 18.9 %

 Shared Intent
 Granted 120.1 1.0 7261 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Intent Requests 120.1 1.0 7261 4.7 %

 Exclusive Page
 Granted 483.4 4.0 29227 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Page Requests 483.4 4.0 29227 19.0 %

 Update Page
 Granted 356.5 3.0 21553 99.0 %
 Waited 3.7 0.0 224 1.0 %
 ------------------------- --------- --------- -------
 Total UP-Page Requests 360.2 3.0 21777 14.2 %

 Shared Page
 Granted 3.2 0.0 195 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Page Requests 3.2 0.0 195 0.1 %

 Exclusive Row
 Granted 1.3 0.1 751 75.6 %
 Waited 0.4 0.0 243 24.4 %
 ------------------------- --------- --------- ------- ----------
 Total EX-Row Requests 1.7 0.1 994 0.1 %

 Update Row
 Granted 0.2 0.0 155 62.0 %

Lock management

960

 Waited 0.3 0.0 95 38.0 %
 ------------------------- --------- --------- ------- ----------
 Total UP-Row Requests 0.4 0.0 250 0.0 %

 Shared Row
 Granted 1699.8 103.3 1019882 100.0 %
 Waited 0.1 0.0 46 0.0 %
 ------------------------- --------- --------- ------- ----------
 Total SH-Row Requests 1699.9 103.3 1019928 59.7 %

 Exclusive Address
 Granted 134.2 1.1 8111 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total EX-Address Requests 134.2 1.1 8111 5.3 %

 Shared Address
 Granted 959.5 8.0 58008 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total SH-Address Requests 959.5 8.0 58008 37.8 %

 Last Page Locks on Heaps
 Granted 120.1 1.0 7258 100.0 %
 Waited 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Last Pg Locks 120.1 1.0 7258 4.7 %

 Deadlocks by Lock Type per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Total Deadlocks 0.0 0.0 0 n/a

 Deadlock Detection
 Deadlock Searches 0.1 0.0 4 n/a
 Searches Skipped 0.0 0.0 0 0.0 %
 Avg Deadlocks per Search n/a n/a 0.00000 n/a

 Lock Promotions
 Total Lock Promotions 0.0 0.0 0 n/a

CHAPTER 38 Monitoring Performance with sp_sysmon

961

Lock Timeouts by Lock Type per sec per xact count % of total
------------------------- --------- --------- ------- ----------
 Exclusive Table 0.0 0.0 0 0.0 %
 Shared Table 0.0 0.0 0 0.0 %
 Exclusive Intent 0.0 0.0 4 44.4 %
 Shared Intent 0.0 0.0 0 0.0 %
 Exclusive Page 0.0 0.0 0 0.0 %
 Update Page 0.0 0.0 1 11.1 %
 Shared Page 0.0 0.0 4 44.4 %
 Exclusive Row 0.0 0.0 0 0.0 %
 Update Row 0.0 0.0 0 0.0 %
 Shared Row 0.0 0.0 0 0.0 %
 Exclusive Address 0.0 0.0 0 0.0 %
 Shared Address 0.0 0.0 0 0.0 %
 Shared Next-Key 0.0 0.0 0 0.0 %
------------------------- --------- --------- -------
Total Lock Timeouts 0.0 0.0 9

“Lock Promotions” does report detail rows if there were no occurrences of
them during the sample interval. In this sample report, “Deadlocks by
Lock Type” is one example.

Lock summary
“Lock Summary” provides overview statistics about lock activity that took
place during the sample interval.

• “Total Lock Requests” reports the total number of lock requests.

• “Avg Lock Contention” reports the average number of times there
was lock contention as a percentage of the total number of lock
requests.

If the lock contention average is high, study the lock detail
information below.

See Chapter 10, “Locking Configuration and Tuning,” for more
information on tuning locking behavior.

• “Deadlock Percentage” reports the percentage of deadlocks as a
percentage of the total number lock requests.

If this value is high, see “Deadlocks by lock type” on page 963.

• “Lock Hashtable Lookups” reports the number of times the lock hash
table was searched for a lock on a page, row, or table.

Lock management

962

• “Avg Hash Chain Length” reports the average number of locks per
hash bucket during the sample interval. You can configure the size of
the lock hash table with the configuration parameter lock hashtable
size. If the average number of locks per hash chain is more than four,
consider increasing the size of the hash table.

See “Configuring the lock hashtable” on page 228 for more
information.

Large inserts with bulk copy are an exception to this guideline. Lock
hash chain lengths may be longer during large bulk copies.

Lock detail
“Lock Detail” provides information that you can use to determine whether
the application is causing a lock contention or deadlock-related problem.

This output reports locks by type, displaying the number of times that each
lock type was granted immediately, and the number of times a task had to
wait for a particular type of lock. The “% of total” is the percentage of the
specific lock type that was granted or had to wait with respect to the total
number of lock requests.

“Lock Detail” reports the following types of locks:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Exclusive Row

• Update Row

• Shared Row

• Exclusive Address

• Shared Address

• Last Page Locks on Heaps

CHAPTER 38 Monitoring Performance with sp_sysmon

963

Lock contention can have a large impact on Adaptive Server performance.
Table locks generate more lock contention than page or row locks because
no other tasks can access a table while there is an exclusive table lock on
it, and if a task requires an exclusive table lock, it must wait until all shared
locks are released. If lock contention is high, run sp_object_stats to help
pinpoint the tables involved.

See “Identifying tables where concurrency is a problem” on page 268 for
more information.

Address locks

“Exclusive Address” and “Shared Address” report the number of times
address locks were granted immediately or the number of times the task
had to wait for the lock. Address locks are held on index pages of allpages-
locked tables. They can have serious impact, since a lock on an index page
blocks access to all data pages pointed to by the index page.

Last page locks on heaps

“Last Page Locks on Heaps” reports locking attempts on the last page of a
partitioned or unpartitioned heap table. It only reports on allpages-locked
tables.

This information can indicate whether there are tables in the system that
would benefit from using data-only-locking or from partitioning or from
increasing the number of partitions. Adding a clustered index that
distributes inserts randomly across the data pages may also help. If you
know that one or more tables is experiencing a problem with contention
for the last page, Adaptive Server Monitor can help determine which table
is experiencing the problem.

See “Improving insert performance with partitions” on page 88 for
information on how partitions can help solve the problem of last-page
locking on unpartitioned heap tables.

Deadlocks by lock type
“Deadlocks by Lock Type” reports the number of specific types of
deadlocks. “% of total” gives the number of each deadlock type as a
percentage of the total number of deadlocks.

Lock management

964

Deadlocks may occur when many transactions execute at the same time in
the same database. They become more common as the lock contention
increases between the transactions.

This category reports data for the following deadlock types:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Exclusive Row

• Update Row

• Shared Row

• Shared Next-Key

• Exclusive Address

• Shared Address

• Others

“Total Deadlocks” summarizes the data for all lock types.

As in the example for this section, if there are no deadlocks, sp_sysmon
does not display any detail information, it only prints the “Total
Deadlocks” row with zero values.

To pinpoint where deadlocks occur, use one or both of the following
methods:

• Use sp_object_stats. See “Identifying tables where concurrency is a
problem” on page 268 for more information.

• Enable printing of detailed deadlock information to the log.

See “Printing deadlock information to the error log” on page 265.

For more information on deadlocks and coping with lock contention, see
“Deadlocks and concurrency” on page 262 and “Locking and
performance” on page 221.

CHAPTER 38 Monitoring Performance with sp_sysmon

965

Deadlock detection
“Deadlock Detection” reports the number of deadlock searches that found
deadlocks and deadlock searches that were skipped during the sample
interval

 For a discussion of the background issues related to this topic, see
“Deadlocks and concurrency” on page 262.

Deadlock searches

“Deadlock Searches” reports the number of times that Adaptive Server
initiated a deadlock search during the sample interval. Deadlock checking
is time-consuming overhead for applications that experience no deadlocks
or very low levels of deadlocking. You can use this data with Average
deadlocks per search to determine if Adaptive Server is checking for
deadlocks too frequently.

Searches skipped

“Searches Skipped” reports the number of times that a task started to
perform deadlock checking, but found deadlock checking in progress and
skipped its check. “% of total” reports the percentage of deadlock searches
that were skipped as a percentage of the total number of searches.

When a process is blocked by lock contention, it waits for an interval of
time set by the configuration parameter deadlock checking period. When
this period elapses, it starts deadlock checking. If a search is already in
process, the process skips the search.

If you see some number of searches skipped, but some of the searches are
finding deadlocks, increase the parameter slightly. If you see a lot of
searches skipped, and no deadlocks, or very few, you can increase the
parameter by a larger amount.

See the System Administration Guide for more information.

Average deadlocks per search

“Avg Deadlocks per Search” reports the average number of deadlocks
found per search.

Lock management

966

This category measures whether Adaptive Server is checking too
frequently. If your applications rarely deadlock, you can adjust the
frequency with which tasks search for deadlocks by increasing the value
of the deadlock checking period configuration parameter.

See the System Administration Guide for more information.

Lock promotions
“Lock Promotions” reports the number of times that the following
escalations took place:

• “Ex-Page to Ex-Table” – Exclusive page to exclusive table.

• “Sh-Page to Sh-Table” – Shared page to shared table.

• “Ex-Row to Ex-Table” – Exclusive row to exclusive table.

• “Sh-Row to Sh-Table – Shared row to shared table.

• “Sh-Next-Key to Sh-Table” – Shared next-key to shared table.

The “Total Lock Promotions” row reports the average number of lock
promotion types combined per second and per transaction.

If no lock promotions took place during the sample interval, only the total
row is printed.

If there are no lock promotions, sp_sysmon does not display the detail
information, as the example for this section shows.

“Lock Promotions” data can:

• Help you detect if lock promotion in your application to is a cause of
lock contention and deadlocks

• Be used before and after tuning lock promotion variables to determine
the effectiveness of the values.

Look at the “Granted” and “Waited” data above for signs of contention. If
lock contention is high and lock promotion is frequent, consider changing
the lock promotion thresholds for the tables involved.

You can configure the lock promotion threshold either server-wide or for
individual tables.

 See information on locking in the System Administration Guide.

CHAPTER 38 Monitoring Performance with sp_sysmon

967

Lock time-out information
The “Lock Time-outs by Lock Type” section reports on the number of
times a task was waiting for a lock and the transaction was rolled back due
to a session-level or server-level lock time-out. The detail rows that show
the lock types are printed only if lock time-outs occurred during the
sample period. If no lock time-outs occurred, the “Total Lock Time-outs”
row is displayed with all values equal to 0.

For more information on lock time-outs, see “Lock timeouts” on page
255.

Data cache management
sp_sysmon reports summary statistics for all caches followed by statistics
for each named cache.

sp_sysmon reports the following activities for the default data cache and
for each named cache:

• Spinlock contention

• Utilization

• Cache searches including hits and misses

• Pool turnover for all configured pools

• Buffer wash behavior, including buffers passed clean, buffers already
in I/O, and buffers washed dirty

• Prefetch requests performed and denied

• Dirty read page requests

You can use sp_cacheconfig and sp_helpcache output to help analyze the
data from this section of the report. sp_cacheconfig provides information
about caches and pools, and sp_helpcache provides information about
objects bound to caches.

See the System Administration Guide for information on how to use these
system procedures.

See “Configuring the data cache to improve performance” on page 307
for more information on performance issues and named caches.

Data cache management

968

Sample output
The following sample shows sp_sysmon output for the “Data Cache
Management” categories. The first block of data, “Cache Statistics
Summary,” includes information for all caches. sp_sysmon reports a
separate block of data for each cache. These blocks are identified by the
cache name. The sample output shown here includes only the default data
cache, although there were more caches configured during the interval.

Data Cache Management

 Cache Statistics Summary (All Caches)

 per sec per xact count % of total
 --------- --------- ------- ----------

 Cache Search Summary
 Total Cache Hits 7520.5 524.7 1804925 99.3 %
 Total Cache Misses 55.9 3.9 13411 0.7 %
 ------------------------- --------- --------- -------
 Total Cache Searches 7576.4 528.6 1818336

 Cache Turnover
 Buffers Grabbed 47.1 3.3 11310 n/a
 Buffers Grabbed Dirty 0.0 0.0 0 0.0 %

 Cache Strategy Summary
 Cached (LRU) Buffers 6056.0 422.5 1453437 99.8 %
 Discarded (MRU) Buffers 11.4 0.8 2734 0.2 %

 Large I/O Usage
 Large I/Os Performed 7.3 0.5 1752 49.1 %
 Large I/Os Denied 7.6 0.5 1819 50.9 %
 ------------------------- --------- --------- -------
 Total Large I/O Requests 14.9 1.0 3571

 Large I/O Effectiveness
 Pages by Lrg I/O Cached 55.9 3.9 13424 n/a
 Pages by Lrg I/O Used 43.6 3.0 10475 78.0 %

 Asynchronous Prefetch Activity
 APFs Issued 9.3 0.6 2224 30.1 %
 APFs Denied Due To
 APF I/O Overloads 0.2 0.0 36 0.5 %
 APF Limit Overloads 0.7 0.0 158 2.1 %
 APF Reused Overloads 0.4 0.0 100 1.4 %

CHAPTER 38 Monitoring Performance with sp_sysmon

969

 APF Buffers Found in Cache
 With Spinlock Held 0.0 0.0 1 0.0 %
 W/o Spinlock Held 20.3 1.4 4865 65.9 %
 ------------------------- --------- --------- -------
 Total APFs Requested 30.8 2.1 7384

 Other Asynchronous Prefetch Statistics
 APFs Used 8.7 0.6 1819 n/a
 APF Waits for I/O 4.0 0.3 965 n/a
 APF Discards 0.0 0.0 0 n/a

 Dirty Read Behavior
 Page Requests 0.0 0.0 0 n/a

--
 Cache: default data cache
 per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Spinlock Contention n/a n/a n/a 24.0 %

 Utilization n/a n/a n/a 93.4 %

 Cache Searches
 Cache Hits 7034.6 490.8 1688312 99.4 %
 Found in Wash 2.4 0.2 583 0.0 %
 Cache Misses 42.7 3.0 10250 0.6 %
 ------------------------- --------- --------- -------
 Total Cache Searches 7077.3 493.8 1698562

 Pool Turnover
 2 Kb Pool
 LRU Buffer Grab 30.7 2.1 7371 82.0 %
 Grabbed Dirty 0.0 0.0 0 0.0 %
 16 Kb Pool
 LRU Buffer Grab 6.7 0.5 1616 18.0 %
 Grabbed Dirty 0.0 0.0 0 0.0 %
 ------------------------- --------- --------- -------
 Total Cache Turnover 37.4 2.6 8987

 Buffer Wash Behavior
 Buffers Passed Clean 0.3 0.0 64 100.0 %
 Buffers Already in I/O 0.0 0.0 0 0.0 %
 Buffers Washed Dirty 0.0 0.0 0 0.0 %

 Cache Strategy
 Cached (LRU) Buffers 5571.9 388.7 1337248 99.8 %

Data cache management

970

 Discarded (MRU) Buffers 11.4 0.8 2732 0.2 %

 Large I/O Usage
 Large I/Os Performed 6.7 0.5 1614 47.1 %
 Large I/Os Denied 7.6 0.5 1814 52.9 %
 ------------------------- --------- --------- -------
 Total Large I/O Requests 14.3 1.0 3428

 Large I/O Detail
 16 Kb Pool
 Pages Cached 53.9 3.8 12928 n/a
 Pages Used 42.4 3.0 10173 78.7 %

 Dirty Read Behavior
 Page Requests 0.0 0.0 0 n/a

Cache statistics summary (all caches)
This section summarizes behavior for the default data cache and all named
data caches combined. Corresponding information is printed for each data
cache.

See “Cache management by cache” on page 975.

Cache search summary

This section provides summary information about cache hits and misses.
Use this data to get an overview of how effective cache design is. A high
number of cache misses indicates that you should investigate statistics for
each cache.

• “Total Cache Hits” reports the number of times that a needed page
was found in any cache. “% of total” reports the percentage of cache
hits as a percentage of the total number of cache searches.

• “Total Cache Misses” reports the number of times that a needed page
was not found in a cache and had to be read from disk. “% of total”
reports the percentage of times that the buffer was not found in the
cache as a percentage of all cache searches.

• “Total Cache Searches” reports the total number of cache searches,
including hits and misses for all caches combined.

CHAPTER 38 Monitoring Performance with sp_sysmon

971

Cache turnover

This section provides a summary of cache turnover:

• “Buffers Grabbed” reports the number of buffers that were replaced
in all of the caches. The “count” column represents the number of
times that Adaptive Server fetched a buffer from the LRU end of the
cache, replacing a database page. If the server was recently restarted,
so that the buffers are empty, reading a page into an empty buffer is
not counted here.

• “Buffers Grabbed Dirty” reports the number of times that fetching a
buffer found a dirty page at the LRU end of the cache and had to wait
while the buffer was written to disk. If this value is nonzero, find out
which caches are affected. It represents a serious performance hit.

Cache strategy summary

This section provides a summary of the caching strategy used.

• “Cached (LRU) Buffers” reports the total number of buffers placed at
the head of the MRU/LRU chain in all caches.

• “Discarded (MRU) Buffers” reports the total number of buffers in all
caches following the fetch-and-discard strategy—the buffers placed
at the wash marker.

Large I/O usage

This section provides summary information about the large I/O requests in
all caches. If “Large I/Os Denied” is high, investigate individual caches to
determine the cause.

• “Large I/Os Performed” measures the number of times that the
requested large I/O was performed. “% of total” is the percentage of
large I/O requests performed as a percentage of the total number of
I/O requests made.

• “Large I/Os Denied” reports the number of times that large I/O could
not be performed. “% of total” reports the percentage of large I/O
requests denied as a percentage of the total number of requests made.

• “Total Large I/O Requests” reports the number of all large I/O
requests (both granted and denied) for all caches.

Data cache management

972

Large I/O effectiveness

“Large I/O Effectiveness” helps you to determine the performance
benefits of large I/O. It compares the number of pages that were brought
into cache by a large I/O to the number of pages actually referenced while
in the cache. If the percentage for “Pages by Lrg I/O Used” is low, it means
that few of the pages brought into cache are being accessed by queries.
Investigate the individual caches to determine the source of the problem.
Use optdiag to check the value for “Large I/O Efficiency” for each table
and index.

• “Pages by Lrg I/O Cached” reports the number of pages brought into
all caches by all large I/O operations that took place during the sample
interval. Low percentages could indicate one of the following:

• Allocation fragmentation in the table’s storage

• Inappropriate caching strategy

• “Pages by Lrg I/O Used” reports the total number of pages that were
used after being brought into cache by large I/O. sp_sysmon does not
print output for this category if there were no “Pages by Lrg I/O
Cached.”

Asynchronous prefetch activity report

This section reports asynchronous prefetch activity for all caches.

For information on asynchronous prefetch for each database device, see
“Disk I/O management” on page 988.

“Total APFs Requested” reports the total number of pages eligible to be
pre fetched, that is, the sum of the look-ahead set sizes of all queries issued
during the sample interval. Other rows in “Asynchronous Prefetch
Activity” provide detail in the three following categories:

• Information about the pages that were pre fetched, “APFs Issued”

• Information about the reasons that prefetch was denied

• Information about how the page was found in the cache

APFs issued

“APFs Issued” reports the number of asynchronous prefetch requests
issued by the system during the sample interval.

CHAPTER 38 Monitoring Performance with sp_sysmon

973

APFs denied due to

This section reports the reasons that APFs were not issued:

• “APF I/O Overloads” reports the number of times APF usage was
denied because of a lack of disk I/O structures or because of disk
semaphore contention.

If this number is high, check the following information in the “Disk
I/O Management” section of the report:

• Check the value of the disk i/o structures configuration parameter.

See “Disk I/O structures” on page 990.

• Check values for contention for device semaphores for each
database device to determine the source of the problem.

See “Device semaphore granted and waited” on page 992 for
more information.

If the problem is due to a shortage of disk I/O structures, set the
configuration parameter higher, and repeat your tests. If the problem
is due to high disk semaphore contention, examine the physical
placement of the objects where high I/O takes place.

• “APF Limit Overloads” indicates that the percentage of buffer pools
that can be used for asynchronous prefetch was exceeded. This limit
is set for the server as a whole by the global async prefetch limit
configuration parameter. It can be tuned for each pool with
sp_poolconfig.

• “APF Reused Overloads” indicates that APF usage was denied due to
a kinked page chain or because the buffers brought in by APF were
swapped out before they could be accessed.

APF buffers found in cache

This section reports how many buffers from APF look-ahead sets were
found in the data cache during the sample interval. Asynchronous prefetch
tries to find a page it needs to read in the data cache using a quick scan
without holding the cache spinlock. If that does not succeed, it then
performs a thorough scan holding the spinlock.

Other asynchronous prefetch statistics

Three additional asynchronous prefetch statistics are reported in this
section:

Data cache management

974

• “APFs Used” reports the number of pages that were brought into the
cache by asynchronous prefetch and used during the sample interval.
The pages counted for this report may have been brought into cache
during the sample interval or by asynchronous prefetch requests that
were issued before the sample interval started.

• “APF Waits for I/O” reports the number of times that a process had to
wait for an asynchronous prefetch to complete. This indicates that the
prefetch was not issued early enough for the pages to be in cache
before the query needed them. It is reasonable to expect some
percentage of “APF Waits.” Some reasons that tasks may have to wait
are:

• The first asynchronous prefetch request for a query is generally
included in “APF Waits.”

• Each time a sequential scan moves to a new allocation unit and
issues prefetch requests, the query must wait until the first I/O
completes.

• Each time a nonclustered index scan finds a set of qualified rows
and issues prefetch requests for the pages, it must wait for the first
pages to be returned.

Other factors that can affect “APF Waits for I/O” are the amount of
processing that needs to be done on each page and the speed of the I/O
subsystem.

• “APF Discards” indicates the number of pages that were read in by
asynchronous prefetch and discarded before they were used. A high
value for “APFs Discards” may indicate that increasing the size of the
buffer pools could help performance, or it may indicate that APF is
bringing pages into cache that are not needed by the query.

Dirty read behavior

This section provides information to help you analyze how dirty reads
(isolation level 0 reads) affect the system.

Page requests

“Page Requests” reports the average number of pages that were requested
at isolation level 0. The “% of total” column reports the percentage of dirty
reads with respect to the total number of page reads.

CHAPTER 38 Monitoring Performance with sp_sysmon

975

Dirty read page requests incur high overhead if they lead to many dirty
read restarts.

Dirty read re-starts

“Re-Starts” reports the number of dirty read restarts that took place. This
category is reported only for the server as a whole, and not for individual
caches. sp_sysmon does not print output for this category if there were no
“Dirty Read Page Requests,” as in the sample output.

A dirty read restart occurs when a dirty read is active on a page and another
process makes changes to the page that cause the page to be deallocated.
The scan for the level 0 must be restarted.

The “% of total” output is the percentage of dirty read restarts done with
isolation level 0 as a percentage of the total number of page reads.

If these values are high, you might take steps to reduce them through
application modifications because overhead associated with dirty reads
and resulting restarts is very expensive. Most applications should avoid
restarts because of the large overhead it incurs.

Cache management by cache
This sections reports cache utilization for each active cache on the server.
The sample output shows results for the default data cache. The following
section explains the per-cache statistics.

Cache spinlock contention

“Spinlock Contention” reports the number of times an engine encountered
spinlock contention on the cache, and had to wait, as a percentage of the
total spinlock requests for that cache. This is meaningful for SMP
environments only.

When a user task makes any changes to a cache, a spinlock denies all other
tasks access to the cache while the changes are being made. Although
spinlocks are held for extremely brief durations, they can slow
performance in multiprocessor systems with high transaction rates. If
spinlock contention is more than 10%, consider using named caches or
adding cache partitions.

Data cache management

976

See “Configuring the data cache to improve performance” on page 307
for information on adding caches, and “Reducing spinlock contention
with cache partitions” on page 316.

Utilization

“Utilization” reports the percentage of searches using this cache as a
percentage of searches across all caches.You can compare this value for
each cache to determine if there are caches that are over- or under-utilized.
If you decide that a cache is not well utilized, you can:

• Change the cache bindings to balance utilization. For more
information, see “Caches and object bindings” on page 162.

• Resize the cache to correspond more appropriately to its utilization.

For more information, see the System Administration Guide.

Cache search, hit, and miss information

This section displays the number hits and misses and the total number of
searches for this cache. Cache hits are roughly comparable to the logical
reads values reported by statistics io; cache misses are roughly equivalent
to physical reads. sp_sysmon always reports values that are higher than
those shown by statistics io, since sp_sysmon also reports the I/O for
system tables, log pages, OAM pages and other system overhead.

Interpreting cache hit data requires an understanding of how the
application uses each cache. In caches that are created to hold specific
objects such as indexes or look up tables, cache hit ratios may reach 100%.
In caches used for random point queries on huge tables, cache hit ratios
may be quite low but still represent effective cache use.

This data can also help you to determine if adding more memory would
improve performance. For example, if “Cache Hits” is high, adding
memory probably would not help much.

Cache hits

“Cache Hits” reports the number of times that a needed page was found in
the data cache. “% of total” reports the percentage of cache hits compared
to the total number of cache searches.

CHAPTER 38 Monitoring Performance with sp_sysmon

977

Found in wash

The number of times that the needed page was found in the wash section
of the cache. “% of total” reports the percentage of times that the buffer
was found in the wash area as a percentage of the total number of hits. If
the data indicate a large percentage of cache hits found in the wash section,
it may mean the wash area is too big. It is not a problem for caches that are
read-only or that have a low number of writes.

A large wash section might lead to increased physical I/O because
Adaptive Server initiates a write on all dirty pages as they cross the wash
marker. If a page in the wash area is written to disk, then updated a second
time, I/O has been wasted. Check to see whether a large number of buffers
are being written at the wash marker.

See “Buffer wash behavior” on page 979 for more information.

If queries on tables in the cache use “fetch-and-discard” strategy for a non-
APF I/O, the first cache hit for a page finds it in the wash. The buffers is
moved to the MRU end of the chain, so a second cache hit soon after the
first cache hit will find the buffer still outside the wash area.

See “Cache strategy” on page 980 for more information, and “Specifying
the cache strategy” on page 421 for information about controlling caching
strategy.

If necessary, you can change the wash size. If you make the wash size
smaller, run sp_sysmon again under fully loaded conditions and check the
output for “Grabbed Dirty” values greater than 0

 See “Cache turnover” on page 971.

Cache misses

“Cache Misses” reports the number of times that a needed page was not
found in the cache and had to be read from disk. “% of total” is the
percentage of times that the buffer was not found in the cache as a
percentage of the total searches.

Total cache searches

This row summarizes cache search activity. Note that the “Found in Wash”
data is a subcategory of the “Cache Hits” number and it is not used in the
summary calculation.

Data cache management

978

Pool turnover

“Pool Turnover” reports the number of times that a buffer is replaced from
each pool in a cache. Each cache can have up to 4 pools, with I/O sizes of
2K, 4K, 8K, and 16K. If there is any “Pool Turnover,” sp_sysmon prints
the “LRU Buffer Grab” and “Grabbed Dirty” information for each pool
that is configured and a total turnover figure for the entire cache. If there
is no “Pool Turnover,” sp_sysmon prints only a row of zeros for “Total
Cache Turnover.”

This information helps you to determine if the pools and cache are the right
size.

LRU buffer grab

“LRU Buffer Grab” is incremented only when a page is replaced by
another page. If you have recently restarted Adaptive Server, or if you
have just unbound and rebound the object or database to the cache,
turnover does not count reading pages into empty buffers.

If memory pools are too small for the throughput, you may see high
turnover in the pools, reduced cache hit rates, and increased I/O rates. If
turnover is high in some pools and low in other pools, you might want to
move space from the less active pool to the more active pool, especially if
it can improve the cache-hit ratio.

If the pool has 1000 buffers, and Adaptive Server is replacing 100 buffers
every second, 10% of the buffers are being turned over every second. That
might be an indication that the buffers do not remain in cache for long
enough for the objects using that cache.

Grabbed dirty

“Grabbed Dirty” gives statistics for the number of dirty buffers that
reached the LRU before they could be written to disk. When Adaptive
Server needs to grab a buffer from the LRU end of the cache in order to
fetch a page from disk, and finds a dirty buffer instead of a clean one, it
must wait for I/O on the dirty buffer to complete. “% of total” reports the
percentage of buffers grabbed dirty as a percentage of the total number of
buffers grabbed.

If “Grabbed Dirty” is a nonzero value, it indicates that the wash area of the
pool is too small for the throughput in the pool. Remedial actions depend
on the pool configuration and usage:

CHAPTER 38 Monitoring Performance with sp_sysmon

979

• If the pool is very small and has high turnover, consider increasing the
size of the pool and the wash area.

• If the pool is large, and it is used for a large number of data
modification operations, increase the size of the wash area.

• If several objects use the cache, moving some of them to another
cache could help.

• If the cache is being used by create index, the high I/O rate can cause
dirty buffer grabs, especially in a small 16K pool. In these cases, set
the wash size for the pool as high as possible, to 80% of the buffers in
the pool.

• If the cache is partitioned, reduce the number of partitions.

• Check query plans and I/O statistics for objects that use the cache for
queries that perform a lot of physical I/O in the pool. Tune queries, if
possible, by adding indexes.

Check the “per second” values for “Buffers Already in I/O” and “Buffers
Washed Dirty” in the section “Buffer wash behavior” on page 979. The
wash area should be large enough to allow I/O to be completed on dirty
buffers before they reach the LRU. The time required to complete the I/O
depends on the actual number of physical writes per second achieved by
your disk drives.

Also check “Disk I/O management” on page 988 to see if I/O contention
is slowing disk writes.

Also, it might help to increase the value of the housekeeper free write
percent configuration parameter. See the System Administration Guide.

Total cache turnover

This summary line provides the total number of buffers grabbed in all
pools in the cache.

Buffer wash behavior

This category reports information about the state of buffers when they
reach the pool’s wash marker. When a buffer reaches the wash marker it
can be in one of three states:

Data cache management

980

• “Buffers Passed Clean” reports the number of buffers that were clean
when they passed the wash marker. The buffer was not changed while
it was in the cache, or it was changed, and has already been written to
disk by the housekeeper or a checkpoint. “% of total” reports the
percentage of buffers passed clean as a percentage of the total number
of buffers that passed the wash marker.

• “Buffers Already in I/O” reports the number of times that I/O was
already active on a buffer when it entered the wash area. The page was
dirtied while in the cache. The housekeeper or a checkpoint has
started I/O on the page, but the I/O has not completed. “% of total”
reports the percentage of buffers already in I/O as a percentage of the
total number of buffers that entered the wash area.

• “Buffers Washed Dirty” reports the number of times that a buffer
entered the wash area dirty and not already in I/O. The buffer was
changed while in the cache and has not been written to disk. An
asynchronous I/O is started on the page as it passes the wash marker.
“% of total” reports the percentage of buffers washed dirty as a
percentage of the total number of buffers that entered the wash area.

If no buffers pass the wash marker during the sample interval, sp_sysmon
prints:

Statistics Not Available - No Buffers Entered Wash Section Yet!

Cache strategy

This section reports the number of buffers placed in cache following the
fetch-and-discard (MRU) or normal (LRU) caching strategies:

• “Cached(LRU) Buffers” reports the number of buffers that used
normal cache strategy and were placed at the MRU end of the cache.
This includes all buffers read directly from disk and placed at the
MRU end, and all buffers that were found in cache. At the completion
of the logical I/O, the buffer was placed at the MRU end of the cache.

• “Discarded (MRU) Buffers” reports the number of buffers that were
placed at the wash marker, using the fetch-and-discard strategy.

If you expect an entire table to be cached, but you e see a high value
for “Discarded Buffers,” use showplan to see if the optimizer is
generating the fetch-and-discard strategy when it should be using the
normal cache strategy.

CHAPTER 38 Monitoring Performance with sp_sysmon

981

See “Specifying the cache strategy” on page 421 for more
information.

Large I/O usage

This section provides data about Adaptive Server prefetch requests for
large I/O. It reports statistics on the numbers of large I/O requests
performed and denied.

Large I/Os performed

“Large I/Os Performed” measures the number of times that a requested
large I/O was performed. “% of total” reports the percentage of large I/O
requests performed as a percentage of the total number of requests made.

Large I/Os denied

“Large I/Os Denied” reports the number of times that large I/O could not
be performed. “% of total” reports the percentage of large I/O requests
denied as a percentage of the total number of requests made.

Adaptive Server cannot perform large I/O:

• If any page in a buffer already resides in another pool.

• When there are no buffers available in the requested pool.

• On the first extent of an allocation unit, since it contains the allocation
page, which is always read into the 2K pool.

If a high percentage of large I/Os were denied, it indicates that the use of
the larger pools might not be as effective as it could be. If a cache contains
a large I/O pool, and queries perform both 2K and 16K I/O on the same
objects, there will always be some percentage of large I/Os that cannot be
performed because pages are in the 2K pool.

If more than half of the large I/Os were denied, and you are using 16K I/O,
try moving all of the space from the 16K pool to the 8K pool. Re-run the
test to see if total I/O is reduced. Note that when a 16K I/O is denied,
Adaptive Server does not check for 8K or 4K pools, but uses the 2K pool.

You can use information from this category and “Pool Turnover” to help
judge the correct size for pools.

Procedure cache management

982

Total large I/O requests

“Total Large I/O Requests” provides summary statistics for large I/Os
performed and denied.

Large I/O detail

This section provides summary information for each pool individually. It
contains a block of information for each 4K, 8K, or 16K pool configured
in cache. It prints the pages brought in (“Pages Cached”) and pages
referenced (“Pages Used”) for each I/O size that is configured.

For example, if a query performs a 16K I/O and reads a single data page,
the “Pages Cached” value is 8, and “Pages Used” value is 1.

• “Pages by Lrg I/O Cached” prints the total number of pages read into
the cache.

• “Pages by Lrg I/O Used” reports the number of pages used by a query
while in cache.

Dirty read behavior

“Page Requests” reports the average number of pages requested at
isolation level 0.

The “% of total” output for “Dirty Read Page Requests” shows the
percentage of dirty reads with respect to the total number of page reads.

Procedure cache management
“Procedure Cache Management” reports the number of times stored
procedures and triggers were requested, read from disk, and removed.

Sample output
The following sample shows sp_sysmon output for the “Procedure Cache
Management” section.

Procedure Cache Management per sec per xact count % of total
--------------------------- --------- --------- ------- ----------

CHAPTER 38 Monitoring Performance with sp_sysmon

983

 Procedure Requests 67.7 1.0 4060 n/a
 Procedure Reads from Disk 0.0 0.0 0 0.0 %
 Procedure Writes to Disk 0.0 0.0 0 0.0 %
 Procedure Removals 0.0 0.0 0 n/a

Procedure requests
“Procedure Requests” reports the number of times stored procedures were
executed.

When a procedure is executed, these possibilities exist:

• An idle copy of the query plan in memory, so it is copied and used.

• No copy of the procedure is in memory, or all copies of the plan in
memory are in use, so the procedure must be read from disk.

Procedure reads from disk
“Procedure Reads from Disk” reports the number of times that stored
procedures were read from disk rather than found and copied in the
procedure cache.

“% of total” reports the percentage of procedure reads from disk as a
percentage of the total number of procedure requests. If this is a relatively
high number, it could indicate that the procedure cache is too small.

Procedure writes to disk
“Procedure Writes to Disk” reports the number of procedures created
during the interval. This can be significant if application programs
generate stored procedures.

Procedure removals
“Procedure Removals” reports the number of times that a procedure aged
out of cache.

Memory management

984

Memory management
“Memory Management” reports the number of pages allocated and
deallocated during the sample interval.

Sample output
The following sample shows sp_sysmon output for the “Memory
Management” section.

Memory Management per sec per xact count % of total
--------------------------- --------- --------- ------- ----------
 Pages Allocated 0.0 0.0 0 n/a
 Pages Released 0.0 0.0 0 n/a

Pages allocated
“Pages Allocated” reports the number of times that a new page was
allocated in memory.

Pages released
“Pages Released” reports the number of times that a page was freed.

Recovery management
This data indicates the number of checkpoints caused by the normal
checkpoint process, the number of checkpoints initiated by the
housekeeper task, and the average length of time for each type. This
information is helpful for setting the recovery and housekeeper parameters
correctly.

CHAPTER 38 Monitoring Performance with sp_sysmon

985

Sample output
The following sample shows sp_sysmon output for the “Recovery
Management” section.

Recovery Management

 Checkpoints per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 # of Normal Checkpoints 0.00117 0.00071 1 n/a
 # of Free Checkpoints 0.00351 0.00213 3 n/a
 ------------------------- --------- --------- -------
 Total Checkpoints 0.00468 0.00284 4

 Avg Time per Normal Chkpt 0.01050 seconds
 Avg Time per Free Chkpt 0.16221 seconds

Checkpoints
Checkpoints write dirty pages (pages that have been modified in memory,
but not written to disk) to the database device. Adaptive Server’s
automatic (normal) checkpoint mechanism works to maintain a minimum
recovery interval. By tracking the number of log records in the transaction
log since the last checkpoint was performed, it estimates whether the time
required to recover the transactions exceeds the recovery interval. If so,
the checkpoint process scans all data caches and writes out all changed
data pages.

When Adaptive Server has no user tasks to process, a housekeeper task
begins writing dirty buffers to disk. These writes are done during the
server’s idle cycles, so they are known as “free writes.” They result in
improved CPU utilization and a decreased need for buffer washing during
transaction processing.

If the housekeeper process finishes writing all dirty pages in all caches to
disk, it checks the number of rows in the transaction log since the last
checkpoint. If there are more than 100 log records, it issues a checkpoint.
This is called a “free checkpoint” because it requires very little overhead.
In addition, it reduces future overhead for normal checkpoints.

Recovery management

986

Number of normal checkpoints

“# of Normal Checkpoints” reports the number of checkpoints performed
by the normal checkpoint process.

If the normal checkpoint is doing most of the work, especially if the time
required is lengthy, it might make sense to increase the number of writes
performed by the housekeeper task.

See the System Administration Guide for information about changing the
number of normal checkpoints.

Number of free checkpoints

“# of Free Checkpoints” reports the number of checkpoints performed by
the housekeeper task. The housekeeper performs checkpoints only when it
has cleared all dirty pages from all configured caches.

You can use the housekeeper free write percent parameter to configure the
maximum percentage by which the housekeeper task can increase
database writes. See the System Administration Guide.

Total checkpoints

“Total Checkpoints” reports the combined number of normal and free
checkpoints that occurred during the sample interval.

Average time per normal checkpoint
“Avg Time per Normal Chkpt” reports the average time that normal
checkpoints lasted.

Average time per free checkpoint
“Avg Time per Free Chkpt” reports the average time that free (or
housekeeper) checkpoints lasted.

CHAPTER 38 Monitoring Performance with sp_sysmon

987

Increasing the housekeeper batch limit
The housekeeper process has a built-in batch limit to avoid overloading
disk I/O for individual devices. By default, the batch size for housekeeper
writes is set to 3. As soon as the housekeeper detects that it has issued 3
I/Os to a single device, it stops processing in the current buffer pool and
begins checking for dirty pages in another pool. If the writes from the next
pool go to the same device, it moves on to another pool. Once the
housekeeper has checked all of the pools, it waits until the last I/O it has
issued has completed, and then begins the cycle again.

The default batch limit is designed to provide good device I/O
characteristics for slow disks. You may get better performance by
increasing the batch size for fast disk drives. This limit can be set globally
for all devices on the server or to different values for disks with different
speeds. You must reset the limits each time Adaptive Server is restarted.

This command sets the batch size to 10 for a single device, using the
virtual device number from sysdevices:

dbcc tune(deviochar, 8, "10")

To see the device number, use sp_helpdevice or this query:

select name, low/16777216
from sysdevices
where status&2=2

To change the housekeeper’s batch size for all devices on the server, use -
1 in place of a device number:

dbcc tune(deviochar, -1, "5")

Legal values for the batch size are 1–255. For very fast drives, setting the
batch size as high as 50 has yielded performance improvements during
testing.

You may want to try setting the batch size higher if:

• The average time for normal checkpoints is high

• There are no problems with exceeding I/O configuration limits or
contention on the semaphores for the devices

Disk I/O management

988

Disk I/O management
This section reports on disk I/O. It provides an overview of disk I/O
activity for the server as a whole and reports on reads, writes, and
semaphore contention for each logical device.

Sample output
The following sample shows sp_sysmon output for the “Disk I/O
Management” section.

Disk I/O Management

 Max Outstanding I/Os per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Server n/a n/a 74 n/a
 Engine 0 n/a n/a 20 n/a
 Engine 1 n/a n/a 21 n/a
 Engine 2 n/a n/a 18 n/a
 Engine 3 n/a n/a 23 n/a
 Engine 4 n/a n/a 18 n/a
 Engine 5 n/a n/a 20 n/a
 Engine 6 n/a n/a 21 n/a
 Engine 7 n/a n/a 17 n/a
 Engine 8 n/a n/a 20 n/a

 I/Os Delayed by
 Disk I/O Structures n/a n/a 0 n/a
 Server Config Limit n/a n/a 0 n/a
 Engine Config Limit n/a n/a 0 n/a
 Operating System Limit n/a n/a 0 n/a

 Total Requested Disk I/Os 202.8 1.7 12261 n/a

 Completed Disk I/O’s
 Engine 0 25.0 0.2 1512 12.4 %
 Engine 1 21.1 0.2 1274 10.5 %
 Engine 2 18.4 0.2 1112 9.1 %
 Engine 3 23.8 0.2 1440 11.8 %
 Engine 4 22.7 0.2 1373 11.3 %
 Engine 5 22.9 0.2 1387 11.4 %
 Engine 6 24.4 0.2 1477 12.1 %

CHAPTER 38 Monitoring Performance with sp_sysmon

989

 Engine 7 22.0 0.2 1332 10.9 %
 Engine 8 21.2 0.2 1281 10.5 %
 ------------------------- --------- --------- ------- ----------
 Total Completed I/Os 201.6 1.7 12188

 d_master
 master per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Reads
 APF 56.6 0.5 3423 46.9 %
 Non-APF
 Writes 64.2 0.5 3879 53.1 %
 ------------------------- --------- --------- ------- ----------
 Total I/Os 120.8 1.0 7302 60.0 %

 Device Semaphore Granted 116.7 1.0 7056 94.8 %
 Device Semaphore Waited 6.4 0.1 388 5.2 %

Maximum outstanding I/Os
“Max Outstanding I/Os” reports the maximum number of I/Os pending for
Adaptive Server as a whole (the first line), and for each Adaptive Server
engine at any point during the sample interval.

This information can help configure I/O parameters at the server or
operating system level if any of the “I/Os Delayed By” values are nonzero.

I/Os delayed by
When the system experiences an I/O delay problem, it is likely that I/O is
blocked by one or more Adaptive Server or operating system limits.

Most operating systems have a kernel parameter that limits the number of
asynchronous I/Os that can take place.

Disk I/O management

990

Disk I/O structures

“Disk I/O Structures” reports the number of I/Os delayed by reaching the
limit on disk I/O structures. When Adaptive Server exceeds the number of
available disk I/O control blocks, I/O is delayed because Adaptive Server
requires that tasks get a disk I/O control block before initiating an I/O
request.

If the result is a nonzero value, try increasing the number of available disk
I/O control blocks by increasing the configuration parameter disk i/o
structures. See the System Administration Guide.

Server configuration limit

Adaptive Server can exceed its limit for the number of asynchronous disk
I/O requests that can be outstanding for the entire Adaptive Server at one
time. You can raise this limit using the max async i/os per server
configuration parameter. See the System Administration Guide.

Engine configuration limit

An engine can exceed its limit for outstanding asynchronous disk I/O
requests. You can change this limit with the max async i/os per engine
configuration parameter. See the System Administration Guide.

Operating system limit

“Operating System Limit” reports the number of times the operating
system limit on outstanding asynchronous I/Os was exceeded during the
sample interval. The operating system kernel limits the maximum number
of asynchronous I/Os that either a process or the entire system can have
pending at any one time. See the System Administration Guide; also see
your operating system documentation.

Requested and completed disk I/Os
This data shows the total number of disk I/Os requested and the number
and percentage of I/Os completed by each Adaptive Server engine.

“Total Requested Disk I/Os” and “Total Completed I/Os” should be the
same or very close. These values will be very different if requested I/Os
are not completing due to saturation.

CHAPTER 38 Monitoring Performance with sp_sysmon

991

The value for requested I/Os includes all requests that were initiated
during the sample interval, and it is possible that some of them completed
after the sample interval ended. These I/Os will not be included in “Total
Completed I/Os”, and will cause the percentage to be less than 100, when
there are no saturation problems.

The reverse is also true. If I/O requests were made before the sample
interval began and they completed during the period, you would see a “%
of Total” for “Total Completed I/Os” value that is more than 100%.

If the data indicates a large number of requested disk I/Os and a smaller
number of completed disk I/Os, there could be a bottleneck in the
operating system that is delaying I/Os.

Total requested disk I/Os

“Total Requested Disk I/Os” reports the number of times that Adaptive
Server requested disk I/Os.

Completed disk I/Os

“Total Completed Disk I/Os” reports the number of times that each engine
completed I/O. “% of total” reports the percentage of times each engine
completed I/Os as a percentage of the total number of I/Os completed by
all Adaptive Server engines combined.

You can also use this information to determine whether the operating
system can keep pace with the disk I/O requests made by all of the engines.

Device activity detail
“Device Activity Detail” reports activity on each logical device. It is
useful for checking that I/O is well balanced across the database devices
and for finding a device that might be delaying I/O. For example, if the
“Task Context Switches Due To” data indicates a heavy amount of device
contention, you can use “Device Activity Detail” to figure out which
device(s) is causing the problem.

This section prints the following information about I/O for each data
device on the server:

• The logical and physical device names

• The number of reads and writes and the total number of I/Os

Disk I/O management

992

• The number of device semaphore requests immediately granted on the
device and the number of times a process had to wait for a device
semaphore

Reads and writes

“Reads” and “Writes” report the number of times that reads or writes to a
device took place. “Reads” reports the number of pages that were read by
asynchronous prefetch and those brought into cache by other I/O activity.
The “% of total” column reports the percentage of reads or writes as a
percentage of the total number of I/Os to the device.

Total I/Os

“Total I/Os” reports the combined number of reads and writes to a device.
The “% of total” column is the percentage of combined reads and writes
for each named device as a percentage of the number of reads and writes
that went to all devices.

You can use this information to check I/O distribution patterns over the
disks and to make object placement decisions that can help balance disk
I/O across devices. For example, does the data show that some disks are
more heavily used than others? If you see that a large percentage of all I/O
went to a specific named device, you can investigate the tables residing on
the device and then determine how to remedy the problem.

See “Creating objects on segments” on page 83.

Device semaphore granted and waited

The “Device Semaphore Granted” and “Device Semaphore Waited”
categories report the number of times that a request for a device semaphore
was granted immediately and the number of times the semaphore was busy
and the task had to wait for the semaphore to be released. The “% of total”
column is the percentage of times the device the semaphore was granted
(or the task had to wait) as a percentage of the total number of device
semaphores requested. This data is meaningful for SMP environments
only.

CHAPTER 38 Monitoring Performance with sp_sysmon

993

When Adaptive Server needs to perform a disk I/O, it gives the task the
semaphore for that device in order to acquire a block I/O structure. On
SMP systems, multiple engines can try to post I/Os to the same device
simultaneously. This creates contention for that semaphore, especially if
there are hot devices or if the data is not well distributed across devices.

A large percentage of I/O requests that waited could indicate a semaphore
contention issue. One solution might be to redistribute the data on the
physical devices.

Network I/O management
“Network I/O Management” reports the following network activities for
each Adaptive Server engine:

• Total requested network I/Os

• Network I/Os delayed

• Total TDS packets and bytes received and sent

• Average size of packets received and sent

This data is broken down by engine, because each engine does its own
network I/O. Imbalances are usually caused by one of the following
condition:

• There are more engines than tasks, so the engines with no work to
perform report no I/O, or

• Most tasks are sending and receiving short packets, but another task
is performing heavy I/O, such as a bulk copy.

Sample output
The following sample shows sp_sysmon output for the “Network I/O
Management” categories.

Network I/O Management

 Total Network I/O Requests 240.1 2.0 14514 n/a
 Network I/Os Delayed 0.0 0.0 0 0.0 %

Network I/O management

994

 Total TDS Packets Received per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 7.9 0.1 479 6.6 %
 Engine 1 12.0 0.1 724 10.0 %
 Engine 2 15.5 0.1 940 13.0 %
 Engine 3 15.7 0.1 950 13.1 %
 Engine 4 15.2 0.1 921 12.7 %
 Engine 5 17.3 0.1 1046 14.4 %
 Engine 6 11.7 0.1 706 9.7 %
 Engine 7 12.4 0.1 752 10.4 %
 Engine 8 12.2 0.1 739 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total TDS Packets Rec’d 120.0 1.0 7257

 Total Bytes Received per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 562.5 4.7 34009 6.6 %
 Engine 1 846.7 7.1 51191 10.0 %
 Engine 2 1100.2 9.2 66516 13.0 %
 Engine 3 1112.0 9.3 67225 13.1 %
 Engine 4 1077.8 9.0 65162 12.7 %
 Engine 5 1219.8 10.2 73747 14.4 %
 Engine 6 824.3 6.9 49835 9.7 %
 Engine 7 879.2 7.3 53152 10.4 %
 Engine 8 864.2 7.2 52244 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total Bytes Rec’d 8486.8 70.7 513081

 Avg Bytes Rec’d per Packet n/a n/a 70 n/a

 --

 Total TDS Packets Sent per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 7.9 0.1 479 6.6 %
 Engine 1 12.0 0.1 724 10.0 %
 Engine 2 15.6 0.1 941 13.0 %
 Engine 3 15.7 0.1 950 13.1 %
 Engine 4 15.3 0.1 923 12.7 %
 Engine 5 17.3 0.1 1047 14.4 %
 Engine 6 11.7 0.1 705 9.7 %
 Engine 7 12.5 0.1 753 10.4 %

CHAPTER 38 Monitoring Performance with sp_sysmon

995

 Engine 8 12.2 0.1 740 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total TDS Packets Sent 120.1 1.0 7262

 Total Bytes Sent per sec per xact count % of total
 ------------------------- --------- --------- ------- ----------
 Engine 0 816.1 6.8 49337 6.6 %
 Engine 1 1233.5 10.3 74572 10.0 %
 Engine 2 1603.2 13.3 96923 13.0 %
 Engine 3 1618.5 13.5 97850 13.1 %
 Engine 4 1572.5 13.1 95069 12.7 %
 Engine 5 1783.8 14.9 107841 14.4 %
 Engine 6 1201.1 10.0 72615 9.7 %
 Engine 7 1282.9 10.7 77559 10.4 %
 Engine 8 1260.8 10.5 76220 10.2 %
 ------------------------- --------- --------- ------- ----------
 Total Bytes Sent 12372.4 103.0 747986

 Avg Bytes Sent per Packet n/a n/a 103 n/a

Total network I/Os requests
“Total Network I/O Requests” reports the total number of packets received
and sent.

If you know how many packets per second the network can handle, you
can determine whether Adaptive Server is challenging the network
bandwidth.

The issues are the same whether the I/O is inbound or outbound. If
Adaptive Server receives a command that is larger than the packet size,
Adaptive Server waits to begin processing until it receives the full
command. Therefore, commands that require more than one packet are
slower to execute and take up more I/O resources.

If the average bytes per packet is near the default packet size configured
for your server, you may want to configure larger packet sizes for some
connections. You can configure the network packet size for all connections
or allow certain connections to log in using larger packet sizes.

See “Changing network packet sizes” on page 16 in the System
Administration Guide.

Network I/O management

996

Network I/Os delayed
“Network I/Os Delayed” reports the number of times I/O was delayed. If
this number is consistently nonzero, consult with your network
administrator.

Total TDS packets received
“Total TDS Packets Received” reports the number of TDS packets
received per engine. “Total TDS Packets Rec’d” reports the number of
packets received during the sample interval.

Total bytes received
“Total Bytes Received” reports the number of bytes received per engine.
“Total Bytes Rec’d” reports the total number of bytes received during the
sample interval.

Average bytes received per packet
“Average Bytes Rec’d per Packet” reports the average number of bytes for
all packets received during the sample interval.

Total TDS packets sent
“Total TDS Packets Sent” reports the number of packets sent by each
engine, and a total for the server as a whole.

Total bytes sent
“Total Bytes Sent” reports the number of bytes sent by each Adaptive
Server engine, and the server as a whole, during the sample interval.

CHAPTER 38 Monitoring Performance with sp_sysmon

997

Average bytes sent per packet
“Average Bytes Sent per Packet” reports the average number of bytes for
all packets sent during the sample interval.

Reducing packet overhead
If your applications use stored procedures, you may see improved
throughput by turning off certain TDS messages that are sent after each
select statement that is performed in a stored procedure. This message,
called a “done in proc” message, is used in some client products. In some
cases, turning off “done in proc” messages also turns off the “rows
returned” messages. These messages may be expected in certain Client-
Library programs, but many clients simply discard these results. Test the
setting with your client products and Open Client programs to determine
whether it affects them before disabling this message on a production
system.

Turning off “done in proc” messages can increase throughput slightly in
some environments, especially those with slow or overloaded networks,
but may have virtually no effect in other environments. To turn the
messages off, issue the command:

dbcc tune (doneinproc, 0)

To turn the messages on, use:

dbcc tune (doneinproc, 1)

This command must be issued each time Adaptive Server is restarted.

Network I/O management

998

999

Symbols
> (greater than)

optimizing 391
< (less than)

in histograms 855
<= (less than or equals)

in histograms 852
(pound sign)

in optdiag output 868
temporary table identifier prefix 627

() (parentheses)
empty, for i_scan operator 724
empty, for worktable scans 748
empty, in union queries 746
empty, subqueries and 741

= (equals sign) comparison operator
in histograms 855

Numerics
302 trace flag 873–897
310 trace flag 874
317 trace flag 891
3604 trace flag 874
4K memory pool, transaction log and 322

A
abstract plan cache configuration parameter 696
abstract plan dump configuration parameter 696
abstract plan groups

adding 702
creating 702
dropping 703
exporting 714
importing 715
information about 703

overview of use 659
plan association and 659
plan capture and 659
procedures for managing 701–715

abstract plan load configuration parameter 696
abstract plan replace configuration parameter 696
abstract plans

comparing 709
copying 708
finding 706
information about 707
pattern matching 706
viewing with sp_help_qplan 707

access
See also access methods
index 140
memory and disk speeds 295
optimizer methods 139, 544–555

access methods 544
hash-based 544
hash-based scan 544
parallel 544–556
partition-based 544
range-based scan 544
selection of 555
showplan messages for 793–813

add index level, sp_sysmon report 960
adding

abstract plan groups 702
address locks

contention 924
deadlocks reported by sp_sysmon 970
sp_sysmon report on 969

affinity
CPU 32, 40
engine example 63

aggregate functions
denormalization and performance 132
denormalization and temporary tables 629
ONCE AGGREGATE messages in showplan 828

Index

Index

1000

optimization of 462, 463
parallel optimization of 572
showplan messages for 784
subqueries including 506

aging
data cache 303
procedure cache 300

algorithm 45
guidelines 48

all keyword
union, optimization of 510

allocation map. See Object Allocation Map (OAM) pages
allocation pages 146

large I/O and 987
allocation units 144, 146

database creation and 366
table 840

allpages locking
changing to with alter table 243
specifying with create table 242
specifying with select into 246
specifying with sp_configure 241

alter table command
changing table locking scheme with 243–246
lock option and fillfactor and 276
parallel sorting and 590
partition clause 93
reservepagegap for indexes 286
sp_dboption and changing lock scheme 244
statistics and 868
unpartition 94

and keyword
subqueries containing 507

any keyword
subquery optimization and 500

APL tables. See all pages locking
application design 901

cursors and 654
deadlock avoidance 267
deadlock detection in 263
delaying deadlock checking 267
denormalization for 130
DSS and OLTP 309
index specification 417
levels of locking 225
managing denormalized data with 136

network packet size and 17
primary keys and 181
procedure cache sizing 301
SMP servers 42
temporary tables in 629
user connections and 921
user interaction in transactions 223

application execution precedence 53, 73–74
environment analysis 51
scheduling and 62
system procedures 58
tuning with sp_sysmon 929

application queues. See application execution
precedence

applications
CPU usage report 934
disk I/O report 935
I/O usage report 934
idle time report 934
network I/O report 935
priority changes 935
TDS messages and 1003
yields (CPU) 934

architecture
multithreaded 23

artificial columns 190
asc index option 451–452
ascending scan showplan message 800
ascending sort 451, 454
ascinserts (dbcc tune parameter) 959
assigning execution precedence 53
associating queries with plans

plan groups and 659
session-level 690

association key
defined 660
plan association and 660
sp_cmp_all_qplans and 711
sp_copy_qplan and 708

asynchronous I/O
buffer wash behavior and 986
sp_sysmon report on 995
statistics io report on 765

asynchronous prefetch 607, 618
dbcc and 611, 622
denied due to limits 979

Index

1001

during recovery 610
fragmentation and 615
hash-based scans and 620
large I/O and 618
look-ahead set 608
maintenance for 622
MRU replacement strategy and 620
nonclustered indexes and 611
page chain fragmentation and 615
page chain kinks and 615, 622
parallel query processing and 620
partition-based scans and 621
performance monitoring 623
pool limits and 614
recovery and 621
sequential scans and 610
sp_sysmon report on 998
tuning goals 617

@@pack_received global variable 18
@@pack_sent global variable 18
@@packet_errors global variable 18
attributes

execution classes 55
auditing

disk contention and 77
performance effects 332
queue, size of 333

auxiliary scan descriptors, showplan messages for
793

average disk I/Os returned, sp_sysmon report on
914

average lock contention, sp_sysmon report on 967

B
Backup Server 368
backups

network activity from 20
planning 5

backward scans
sp_sysmon report on 961

base priority 55, 56
batch processing

bulk copy and 371
I/O pacing and 923

managing denormalized data with 137
performance monitoring and 900
temporary tables and 635
transactions and lock contention 224

bcp (bulk copy utility) 370
heap tables and 157
large I/O for 315
parallel 97
partitioned tables and 97
reclaiming space with 169
temporary tables 627

best access block 889
between keyword

optimization 386
between operator selectivity

dbcc traceon(302) output 884
statistics 398

binary expressions xxxix
binary mode

optdiag utility program 858–860
binding

caches 308, 328
objects to data caches 162
tempdb 309, 632
transaction logs 309

blocking 235
blocking network checks, sp_sysmon report on 912
blocking process

avoiding during mass operations 225
sp_lock report on 259
sp_who report on 257

B-trees, index
nonclustered indexes 207

buffer pools
specifying I/O size 735

buffers
allocation and caching 165
chain of 162
grabbed statistics 977
procedure (“proc”) 300
sorting 593–594
statistics 977
unavailable 420
wash behavior 985

bulk copying. See bcp (bulk copy utility)
business models and logical database design 121

Index

1002

C
cache hit ratio

cache replacement policy and 319
data cache 306
partitioning and 535
procedure cache 301
sp_sysmon report on 976, 982

cache replacement policy 317
defined 317
indexes 318
lookup tables 318
transaction logs 318

cache replacement strategy 163–167, 317
cache strategy property

specifying 726, 729
cache, procedure

cache hit ratio 301
errors 301
query plans in 300
size report 300
sizing 301
sp_sysmon report on 988
task switching and 922

cached (LRU) buffers 977
caches, data 302–330

aging in 162
binding objects to 162
cache hit ratio 306
clearing pages from 771
data modification and 165, 305
deletes on heaps and 166
guidelines for named 318
hits found in wash 983
hot spots bound to 308
I/O configuration 161, 315
inserts to heaps and 165
joins and 164
large I/O and 313
misses 983
MRU replacement strategy 163
named 307–328
page aging in 303
parallel sorting and 592
pools in 161, 315
sorts and 593–594
spinlocks on 309

strategies chosen by optimizer 316, 986
subquery results 508
table scans and 435
task switching and 922
tempdb bound to own 309, 632
total searches 983
transaction log bound to own 309
updates to heaps and 166
utilization 982
wash marker 162

canceling
queries with adjusted plans 575

capturing plans
session-level 690

chain of buffers (data cache) 162
chains of pages

overflow pages and 204
placement 76
unpartitioning 94

changing
configuration parameters 900

character expressions xxxix
cheap direct updates 466
checkpoint process 303, 991

average time 992
CPU usage 910
housekeeper task and 35
I/O batch size 923
sp_sysmon and 990

client
connections 23
packet size specification 17
task 24
TDS messages 1003

client/server architecture 15
close command

memory and 642
close on endtran option, set 654
cluster ratio

data pages 844
data pages, optdiag output 844
data rows 845
dbcc traceon(302) report on 878
index pages 844
reservepagegap and 283, 288
statistics 841, 843

Index

1003

clustered indexes 196
asynchronous prefetch and scans 610
changing locking modes and 245
computing number of data pages 352
computing number of pages 346
computing size of rows 347
create index requirements 589
delete operations 205
estimating size of 345, 351
exp_row_size and row forwarding 277–283
fillfactor effect on 356
guidelines for choosing 179
insert operations and 200
order of key values 199
overflow pages and 204
overhead 168
page reads 200
page splits and 955
partitioned tables and 95
performance and 168
point query cost 441
prefetch and 419
range query cost 442
reclaiming space with 169
reducing forwarded rows 277–283
scans and asynchronous prefetch 610
segments and 84
select operations and 199
showplan messages about 798
size of 339, 348
space requirements 599
structure of 198

clustered table, sp_sysmon report on 943
collapsing tables 132
column-level statistics

generating the update statistics 754
truncate table and 752
update statistics and 752

columns
artificial 190
datatype sizes and 346, 352
derived 132
fixed- and variable-length 346
fixed-length 352
redundant in database design 131
splitting tables 135

unindexed 141
values in, and normalization 124
variable-length 352

command syntax 761
commands for configuration 618
committed transactions, sp_sysmon report on 940
comparing abstract plans 709
compiled objects 300

data cache size and 302
composite indexes 183

advantages of 185
density statistics 846
performance 850
selectivity statistics 846
statistics 850
update index statistics and 755

compute clause
showplan messages for 785

concurrency
deadlocks and 262
locking and 262
SMP environment 42

concurrency optimization
for small tables 427

concurrency optimization threshold
deadlocks and 427

configuration (Server)
lock limit 226
memory 296

configuration (server)
housekeeper task 36
I/O 313
named data caches 307
network packet size 16
number of rows per page 293
performance monitoring and 901
sp_sysmon and 900

configuration server)
parallel query processing 523

connections
client 23
cursors and 654
opened (sp_sysmon report on) 921
packet size 16

consistency
data and performance 137

Index

1004

constants xxxix
constraints

primary key 177
unique 177

consumer process 585, 601
contention 901

address locks 924
avoiding with clustered indexes 195
data cache 320
data cache spinlock 981
device semaphore 998
disk devices 927
disk I/O 79, 331, 994
disk structures 927
disk writes 922
I/O device 79, 927
last page of heap tables 969
lock 923, 967
log semaphore requests 926, 950
logical devices and 76
max_rows_per_page and 292
partitions to avoid 85
reducing 222
SMP servers and 42
spinlock 320, 981
system tables in tempdb 632
transaction log writes 170
underlying problems 77
yields and 922

contention, lock
locking scheme and 236
sp_object_stats report on 269

context column of sp_lock output 259
context switches 921
control pages for partitioned tables

updating statistics on 103
controller, device 79
conventions

used in manuals xxxvii
conversion

datatypes 408
in lists to or clauses 457
subqueries to equijoins 505
ticks to milliseconds, formula for 763

coordinating process 513, 586
copying

abstract plans 708
plan groups 710
plans 708, 710

correlated subqueries
showplan messages for 825

correlation names
for tables 743
for views 748

cost
base cost 879
index scans output in dbcc traceon(302) 887
parallel clustered index partition scan 548
parallel hash-based table scan 550
parallel nonclustered index hash-based scan 551
parallel partition scan 546
point query 441
range query using clustered index 442
range query using nonclustered index 444, 445
sort operations 449
table scan 879

count col_name aggregate function
optimization of 463

count(*) aggregate function
optimization of 463

counters, internal 900
covered queries

index covering 140
specifying cache strategy for 421

covering nonclustered indexes
asynchronous prefetch and 610
configuring I/O size for 325
cost 445
nonequality operators and 393
range query cost 444
rebuilding 365
showplan message for 803

CPU
affinity 40
checkpoint process and usage 910
guidelines for parallel queries 533
processes and 907
saturation 532, 534
server use while idle 909
sp_sysmon report and 905
ticks 763
time 763

Index

1005

utilization 531, 536
yielding and overhead 912
yields by engine 911

cpu grace time configuration parameter
CPU yields and 31

CPU usage
applications, sp_sysmon report on 934
CPU-intensive queries 531
deadlocks and 263
housekeeper task and 35
logins, sp_sysmon report on 934
lowering 909
monitoring 37
sp_monitor system procedure 38
sp_sysmon report on 908

CPU usages
parallel queries and 536

cpuaffinity (dbcc tune parameter) 40
create clustered index command

sorted_data and fillfactor interaction 277
sorted_data and reservepagegap interaction

289–291
statistics and 869, 870

create database command
parallel I/O 76

create index command
distributing data with 95
fillfactor and 271–276
locks acquired by 362
logging considerations of 600
number of sort buffers parameter and 583, 592–

597
parallel configuration and 95
parallel sort and 95
reservepagegap option 286
segments and 363
sorted_data option 363
space requirements 599
with consumers clause and 590

create nonclustered index command
statistics and 869, 870

create table command
exp_row_size option 278
locking scheme specification 242
reservepagegap option 285
space management properties 278

statistics and 869, 870
creating

abstract plan groups 702
cursor rows option, set 653
cursors

close on endtran option 253
execute 642
Halloween problem 644
indexes and 643
isolation levels and 253, 650
locking and 252–254, 640
modes 643
multiple 654
or strategy optimization and 461
read-only 643
shared keyword in 253
statistics io output for 766
stored procedures and 642
updatable 643

D
data

consistency 137
little-used 134
max_rows_per_page and storage 292
storage 79, 139–170
uniqueness 195

data caches 302–330
aging in 162
binding objects to 162
cache hit ratio 306
contention 981
data modification and 165, 305
deletes on heaps and 166
fetch-and-discard strategy 163
flushing during table scans 435
guidelines for named 318
hot spots bound to 308
inserts to heaps and 165
joins and 164
large I/O and 313
management, sp_sysmon report on 973
named 307–328
page aging in 303

Index

1006

parallel sorting and 594, 598
sizing 310–326
sort buffers and 594
spinlocks on 309, 981
strategies chosen by optimizer 316
subquery cache 508
tempdb bound to own 309, 631, 632
transaction log bound to own 309
updates to heaps and 166
wash marker 162

data integrity
application logic for 136
denormalization effect on 129
managing 135

data modification
data caches and 165, 305
heap tables and 157
log space and 369
nonclustered indexes and 182
number of indexes and 175
recovery interval and 330
showplan messages 779
transaction log and 170
update modes 464, 779

data page cluster ratio
defined 844
optdiag output 844
statistics 841

data pages 141–169
clustered indexes and 198
computing number of 346, 352
count of 839
fillfactor effect on 356
full, and insert operations 201
limiting number of rows on 292
linking 155
number of empty 840
partially full 168
prefetching 419
text and image 143

data row cluster ratio
defined 844
statistics 844

data rows
size, optdiag output 840

database design 121–137

collapsing tables 132
column redundancy 131
indexing based on 189
logical keys and index keys 179
normalization 123
ULC flushes and 948

database devices 78
parallel queries and 79, 533
sybsecurity 81
tempdb 80

database objects
binding to caches 162
placement 75–119
placement on segments 75
storage 139–170

databases
See also database design
creation speed 366
devices and 79
lock promotion thresholds for 226
placement 75

data-only locking (DOL) tables
maximum row size 243

datapages locking
changing to with alter table 243
specifying with create table 242
specifying with select into 246
specifying with sp_configure 241

datarows locking
changing to with alter table 243
specifying with create table 242
specifying with select into 246
specifying with sp_configure 241

datatypes
choosing 181, 190
matching in queries 401
mismatched 876
numeric compared to character 190

dbcc (database c+onsistency checker)
configuring asynchronous prefetch for 622

dbcc (database consistency checker)
asynchronous prefetch and 611
large I/O for 315
trace flags 873

dbcc (engine) command 40
dbcc traceon(302) 873–897

Index

1007

simulated statistics and 867
dbcc traceon(310) 874
dbcc traceon(317) 891
dbcc traceon(3604) 874
dbcc tune

ascinserts 959
cleanup 373
cpuaffinity 40
des_greedyalloc 925
deviochar 993
doneinproc 1003
maxwritedes 923

deadlock checking period configuration parameter
267

deadlocks 262–268, 270
application-generated 262
avoiding 266
concurrency optimization threshold settings 427
defined 262
delaying checking 267
descending scans and 456
detection 263, 270, 971
diagnosing 235
error messages 263
percentage 967
performance and 221
searches 971
sp_object_stats report on 269
sp_sysmon report on 967
statistics 969
table scans and 427
worker process example 264

deallocate cursor command
memory and 642

debugging aids
dbcc traceon(302) 873
set forceplan on 413

decision support system (DSS) applications
execution preference 73
named data caches for 309
network packet size for 16
parallel queries and 513, 536

declare cursor command
memory and 642

default exp_row_size percent configuration
parameter 280

default fill factor percentage configuration parameter
274

default settings
audit queue size 333
auditing 332
index statistics 399
max_rows_per_page 293
network packet size 16
number of tables optimized 415

deferred index updates 468
deferred updates 467

showplan messages for 780
degree of parallelism 522, 556–565

definition of 556
joins and 560, 562
optimization of 557
parallel sorting and 590
query-level 526
runtime adjustment of 565, 573–576
server-level 523
session-level 525
specifying 732
upper limit to 557

delete operations
clustered indexes 205
heap tables 158
index maintenance and 954
joins and update mode 467
nonclustered indexes 212
object size and 337
update mode in joins 467

delete shared statistics command 867
delete statistic 759
delete statistics command

managing statistics and 759
system tables and 869, 870

deleted rows
reported by optdiag 840

deleting
plans 708, 713

demand locks
sp_lock report on 259

denormalization 128
application design and 136
batch reconciliation and 137
derived columns 132

Index

1008

disadvantages of 130
duplicating tables and 133
management after 135
performance benefits of 130
processing costs and 129
redundant columns 131
techniques for 131
temporary tables and 629

dense frequency counts 854
density

index, and joins 478, 499
range cell 396
total 396

density statistics
joins and 849
range cell density 848, 849
total density 848, 849

derived columns 132
derived table

defined 718
desc index option 451–452
descending order (desc keyword) 451, 454

covered queries and 455
descending scan showplan message 800
descending scans

deadlocks and 456
detecting deadlocks 270
devices

activity detail 997
adding 901
adding for partitioned tables 110, 115
object placement on 75
partitioned tables and 115
RAID 90, 533
semaphores 998
throughput, measuring 90
using separate 42

deviochar (dbcc tune parameter) 993
direct updates 464

cheap 466
expensive 466
in-place 465
joins and 467

dirty pages
checkpoint process and 304
wash area and 303

dirty reads
modify conflicts and 927
requests 988
restarts 981
sp_sysmon report on 980

discarded (MRU) buffers, sp_sysmon report on 977
disjoint qualifications

dbcc traceon(302) message 885
disk devices

adding 901
average I/Os 914
contention 927
I/O checks report (sp_sysmon) 913
I/O management report (sp_sysmon) 994
I/O speed 533
I/O structures 996
parallel queries and 528, 532
parallel sorting and 598, 599
performance and 75–119
transaction log and performance 926
write operations 922

disk I/O
application statistics 935
performing 34
sp_sysmon report on 994

disk i/o structures configuration parameter 996
asynchronous prefetch and 614

disk mirroring
device placement 82
performance and 76

distinct keyword
parallel optimization of 581
showplan messages for 789, 829

distribution map 585, 602
drop index command

statistics and 759, 869, 870
drop table command

statistics and 869, 870
dropping

abstract plan groups 703
indexes specified with index 417
plans 708, 713

DSS applications
 See Decision Support Systems

dump database command
parallel sorting and 600

Index

1009

duplicate rows
removing from worktables 460

duplication
tables 133
update performance effect of 468

dynamic index
or query optimization 458

dynamic indexes 461
showplan message for 806

E
EC

attributes 55
empty parentheses

i_scan operator and 724
in union queries 746
subqueries and 741
worktable scans and 748

end transaction, ULC flushes and 948
engine affinity, task 55, 57

example 59
engine resources

results analysis and tuning 52
engine resources, distribution 45
engines 24

busy 909
“config limit” 996
connections and 921
CPU affinity 40
CPU report and 910
defined 24
functions and scheduling 32
monitoring performance 901
network 33
number of 531
outstanding I/O 996
scheduling 32
taking offline 40
utilization 909

environment analysis 51
I/O-intensive and CPU-intensive execution objects

51
intrusive and unintrusive 50

environment analysis and planning 49

equality selectivity
dbcc traceon(302) output 399, 883
statistics 398

equi-height histograms 852
equijoins

subqueries converted to 505
equivalents in search arguments 386
error logs

procedure cache size in 300
error messages

deadlocks 263
procedure cache 301
process_limit_action 575
runtime adjustments 575

errors
packet 18
procedure cache 300

escalation, lock 230
estimated cost

fast and slow query processing 383
I/O, reported by showplan 812
indexes 382
joins 399
materialization 506
or clause 459
reformatting 499
subquery optimization 509

exceed logical page size 151
exclusive locks

intent deadlocks 970
page deadlocks 970
sp_lock report on 259
table deadlocks 970

execute cursors
memory use of 642

execution 34
attributes 53
mixed workload precedence 73
precedence and users 74
preventing with set noexec on 773
ranking applications for 53
stored procedure precedence 74
system procedures for 58
time statistics from set statistics time on 763

execution class 54
attributes 55

Index

1010

predefined 54
user-defined 54

execution objects 54
behavior 50
performance hierarchy 53, ??–64, ??–72
scope 64

execution precedence
among applications 58
assigning 53
scheduling and 62

existence joins
showplan messages for 830

exists check mode 694
exists keyword

parallel optimization of 571
exists keyword

showplan messages for 830
subquery optimization and 500

exp_row_size option 277–283
create table 278
default value 278
server-wide default 280
setting before alter table...lock 378
sp_chgattribute 279
storage required by 357

expected row size. See exp_row_size option
expensive direct updates 466, 467
exporting plan groups 714
expression subqueries

optimization of 505
showplan messages for 828

expressions
optimization of queries using 883

extended stored procedures
sp_sysmon report on 935

extents 840, 843
allocation and reservepagegap 283
partitioned tables and extent stealing 101
space allocation and 144

F
FALSE, return value of 501
fam dur locks 259
family of worker processes 513

fetch-and-discard cache strategy 163
fetching cursors

locking and 254
memory and 642

fillfactor
advantages of 272
disadvantages of 272
index creation and 181, 271
index page size and 356
locking and 292
max_rows_per_page compared to 292
page splits and 272

fillfactor option
See also fillfactor values
create index 271
sorted_data option and 277

fillfactor values
See also fillfactor option
alter table...lock 274
applied to data pages 275
applied to index pages 275
clustered index creation and 274
nonclustered index rebuilds 274
reorg rebuild 274
table-level 274

filter selectivity 887
finding abstract plans 706
first normal form 124

See also normalization
first page

allocation page 146
text pointer 143

fixed-length columns
calculating space for 342
data row size of 346, 352
for index keys 182
index row size and 347
indexes and update modes 474
overhead 182

flattened subqueries 500, 742
showplan messages for 818

floating-point data xxxix
for load option

performance and 366
for update option, declare cursor

optimizing and 653

Index

1011

forceplan
abstract plans and 721

forceplan option, set 413
alternatives 414
risks of 414

foreign keys
denormalization and 130

formulas
cache hit ratio 307
table or index sizes 342–359

forward scans
sp_sysmon report on 961

forwarded rows
optdiag output 840
query on systabstats 281
reserve page gap and 283

fragmentation
optdiag cluster ratio output 841, 844

fragmentation, data
effects on asynchronous prefetch 615
large I/O and 978
page chain 615

fragmentation, reserve page gap and 283
free checkpoints 992
free writes 35
frequency cell

defined 854
weights and query optimization 883

full ULC, log flushes and 948
functions

optimization of queries using 883

G
g_join operator 719–721
global allocation map (GAM) pages 145
grabbed dirty, sp_sysmon report on 984
group by clause

showplan messages for 782, 784
group commit sleeps, sp_sysmon report on 926

H
Halloween problem

cursors and 644
hardware

network 19
parallel query processing guidelines 533
ports 22
terminology 78

hash-based scans
asynchronous prefetch and 620
heap tables and 555
I/O and 544
indexing and 555
joins and 79
limiting with set scan_parallel_degree 526
nonclustered indexes and 550–551, 555
table scans 549–550
worker processes and 544

header information
data pages 142
packet 15
“proc headers” 300

heading, sp_sysmon report 907
heap tables 155–170

bcp (bulk copy utility) and 373
delete operations 158
deletes and pages in cache 166
guidelines for using 168
I/O and 161
I/O inefficiency and 168
insert operations on 157
insert statistics 942
inserts and pages in cache 165
lock contention 969
locking 157
maintaining 168
performance limits 157
select operations on 156, 164
updates and pages in cache 166
updates on 159

high priority users 74
hints operator 721–722
histograms 846

dense frequency counts in 854
duplicated values 854
equi-height 852
null values and 853
optdiag output 852–857

Index

1012

sample output 851
sparse frequency counts in 855
steps, number of 755

historical data 134
holdlock keyword

locking 250
shared keyword and 254

horizontal table splitting 134
hot spots 74

avoiding 224
binding caches to 308

housekeeper free write percent configuration parameter
36, 992

housekeeper task 35–37
batch write limit 993
buffer washing 937
checkpoints and 991
garbage collection 937
reclaiming space 937
recovery time and 332
sp_sysmon and 990
sp_sysmon report on 936

I
I/O

See also large I/O
access problems and 77
asynchronous prefetch 607, ??–624
balancing load with segments 85
batch limit 923
bcp (bulk copy utility) and 373
buffer pools and 308
checking 913
completed 996
CPU and 38, 909
create database and 367
default caches and 162
delays 995
device contention and 927
devices and 76
direct updates and 465
disk 34
efficiency on heap tables 168
expected row size and 283

heap tables and 161
increasing size of 161
limits 995
limits, effect on asynchronous prefetch 979
maximum outstanding 995
memory and 295
named caches and 308
network 33
optimizer estimates of 876
pacing 923
parallel for create database 76
performance and 78
prefetch keyword 418
range queries and 418
recovery interval and 369
requested 996
saturation 532
saving with reformatting 498
select operations on heap tables and 164
server-wide and database 80, 994
showplan messages for 811
sp_spaceused and 339
specifying size in queries 418
spreading between caches 632
statistics information 763
structures 996
total 998
total estimated cost showplan message 812
transaction log and 170
update operations and 466

i/o polling process count configuration parameter
network checks and 913

I/O size
specifying 735

i_scan operator 722
identifiers

list of 717
IDENTITY columns

cursors and 644
indexing and performance 179

idle CPU, sp_sysmon report on 911
image datatype

page size for storage 144
storage on separate device 85, 143

importing abstract plan groups 715
in keyword

Index

1013

matching index scans and 805
optimization of 457
subquery optimization and 500

in operator (abstract plans) 724–726
in-between selectivity 398

changing with optdiag 860
dbcc traceon(302) output 884
query optimization and 859

index covering
definition 140
showplan messages for 803
sort operations and 455

index descriptors, sp_sysmon report on 963
index height 889

optdiag report 840
statistics 843

index keys
asc option for ordering 451–452
desc option for ordering 451–452
showplan output 805

index keys, logical keys and 179
index pages

cluster ratio 844
fillfactor effect on 273, 356
limiting number of rows on 292
page splits for 203
storage on 196

index row size
statistics 843

index scans
i_scan operator 722

indexes 195–219
access through 140, 195
add levels statistics 960
avoiding sorts with 449
bulk copy and 370
cache replacement policy for 318
choosing 140
computing number of pages 347
cost of access 887
creating 362, 581
cursors using 643
dbcc traceon(302) report on 887
denormalization and 130
design considerations 173
dropping infrequently used 189

dynamic 461
fillfactor and 271
guidelines for 181
height statistics 840
intermediate level 198
large I/O for 418
leaf level 197
leaf pages 208
maintenance statistics 953
management 952
max_rows_per_page and 293
number allowed 177
optdiag output 842
parallel creation of 581
performance and 195–219
rebuilding 365
recovery and creation 363
root level 197
selectivity 175
size of 336
size of entries and performance 176
SMP environment and multiple 42
sort order changes 365
sp_spaceused size report 339
specifying for queries 416
temporary tables and 627, 635
types of 196
update index statistics on 755
update modes and 473
update operations and 465, 466
update statistics on 755
usefulness of 155

information (Server)
dbcc traceon(302) messages ??–897

information (server)
dbcc traceon(302) messages 873–??
I/O statistics 763

information (sp_sysmon)
CPU usage 38

initializing
text or image pages 358

inner tables of joins 484
in-place updates 465
insert command

contention and 224
insert operations

Index

1014

clustered indexes 200
clustered table statistics 943
heap table statistics 942
heap tables and 157
index maintenance and 954
logging and 633
nonclustered indexes 211
page split exceptions and 202
partitions and 85
performance of 76
rebuilding indexes after many 365
total row statistics 943

integer data
in SQL xxxix
optimizing queries on 391, 876

intent table locks
sp_lock report on 259

intermediate levels of indexes 198
isolation levels 247–252

cursors 253, 650
default 247

J
join clauses

dbcc traceon(302) output 881
join operator

g_join 719
m_g_join 727
merge join 727
nested-loop join 731
nl_g_join 731

join order
dbcc traceon(317) output 891
outer join restrictions 482

join transitive closure
defined 388
enabling 388

joins
choosing indexes for 180
data cache and 164
datatype compatibility in 182, 408
denormalization and 128
derived columns instead of 132
hash-based scan and 79

index density 478, 499
indexing by optimizer 399
many tables in 479, 480
nested-loop 482
normalization and 124
number of tables considered by optimizer 415
optimizing 477, 875
or clause optimization 510
parallel optimization of 560–563, ??–570
process of 399
scan counts for 769
table order in 413
table order in parallel 560–563, ??–570
temporary tables for 629
union operator optimization 510
update mode and 467
updates using 465, 466, 467

jtc option, set 424

K
kernel

engine busy utilization 909
utilization 908

key values
index storage 195
order for clustered indexes 199
overflow pages and 204

keys, index
choosing columns for 179
clustered and nonclustered indexes and 196
composite 183
logical keys and 179
monotonically increasing 203
showplan messages for 804
size and performance 181
size of 177
unique 181
update operations on 465

keywords
list of 717

Index

1015

L
large I/O

asynchronous prefetch and 618
denied 977, 987
effectiveness 978
fragmentation and 978
index leaf pages 418
named data caches and 313
pages used 988
performed 977, 987
pool detail 988
restrictions 987
total requests 977, 988
usage 977, 987

large object (LOB) 85
last log page writes in sp_sysmon report 927
last page locks on heaps in sp_sysmon report 969
leaf levels of indexes 197

average size 843
fillfactor and number of rows 356
queries on 141
row size calculation 349, 353

leaf pages 208
calculating number in index 350, 354
limiting number of rows on 292

levels
indexes 197
locking 225
tuning 3–8

lightweight process 25
like optimization 386
limits

parallel query processing 522, 525
parallel sort 522
worker processes 522, 525

listeners, network 22
load balancing for partitioned tables 101

maintaining 118
local backups 368
local variables

optimization of queries using 883
lock allpages option

alter table command 243
create table command 242
select into command 246

lock datapages option

alter table command 243
create table command 242
select into command 246

lock datarows option
alter table command 243
create table command 242
select into command 246

lock hash table
sp_sysmon report on 968

lock hashtable
lookups 967

lock hashtable size configuration parameter
sp_sysmon report on 968

lock promotion thresholds 226–234
database 233
default 233
dropping 234
precedence 233
promotion logic 232
server-wide 232
sp_sysmon report on 972
table 233

lock scheme configuration parameter 241
lock timeouts

sp_sysmon report on 973
locking 11–227

contention and 923
contention, reducing 222–226
create index and 362
cursors and 252
deadlocks 262–268
for update clause 252
heap tables and inserts 157
holdlock keyword 248
isolation levels and 247–252
last page inserts and 179
monitoring contention 237
noholdlock keyword 248
noholdlock keyword 251
page and table, controlling 229
performance 221
read committed clause 249
read uncommitted clause 249, 251
reducing contention 222
serializable clause 249
shared keyword 248, 251

Index

1016

sp_lock report on 258
sp_sysmon report on 967
tempdb and 632
worktables and 632

locking commands 241–256
locking configuration 221
locking scheme 234–239

changing with alter table 243–246
clustered indexes and changing 245
create table and 242
server-wide default 241
specifying with create table 242
specifying with select into 246

locks
address 924
blocking 257
deadlock percentage 967
escalation 230
fam dur 259
“lock sleep” status 257
reporting on 257
sp_sysmon report on 968
table versus page 230
table versus row 230
total requests 967
types of 259
viewing 258

locks, number of
data-only-locking and 227

locktype column of sp_lock output 259
log I/O size

group commit sleeps and 926
matching 315
tuning 312, 927
using large 323

log scan showplan message 810
log semaphore requests 950
logging

bulk copy and 370
minimizing in tempdb 633
parallel sorting and 600

logical database design 121, 137
logical device name 78
logical expressions xxxix
logical keys, index keys and 179
logical process manager 53

logins 33
look-ahead set 608

dbcc and 611
during recovery 610
nonclustered indexes and 611
sequential scans and 610

lookup tables, cache replacement policy for 318
loops

runnable process search count and 909, 911
showplan messages for nested iterations 794

LRU replacement strategy 162, 163
buffer grab in sp_sysmon report 984
I/O and 770
showplan messages for 812
specifying 422

lru scan property 726–727

M
m_g_join operator 727–728
maintenance tasks 361–373

forced indexes 417
forceplan checking 413
indexes and 954
performance and 76

managing denormalized data 135
map, object allocation. See object allocation map (OAM)

pages
matching index scans 215

showplan message 805
materialized subqueries 505, 742

showplan messages for 822
max aggregate function

min used with 463
optimization of 463

max async i/os per engine configuration parameter
asynchronous prefetch and 614
tuning 996

max async i/os per server configuration parameter
asynchronous prefetch and 614
tuning 996

max parallel degree configuration parameter 523,
563, 564

sorts and 588

Index

1017

max scan parallel degree configuration parameter
523, 558

max_rows_per_page option
fillfactor compared to 292
locking and 292
select into effects 293

maximum outstanding I/Os 995
maximum ULC size, sp_sysmon report on 949
maxwritedes (dbcc tune parameter) 923
memory

allocated 990
cursors and 640
I/O and 295
named data caches and 307
network packets and 16
performance and 295–333
released 990
shared 31
sp_sysmon report on 990

merge join
abstract plans for 728

merge runs, parallel sorting 586, 593
reducing 593

merging index results 586
messages

See also errors
dbcc traceon(302) 873–897
deadlock victim 263
dropped index 417
showplan 773–832
turning off TDS 1003

min aggregate function
max used with 463
optimization of 463

minor columns
update index statistics and 755

mixed workload execution priorities 73
model, SMP process 31
modes of disk mirroring 82
“Modify conflicts” in sp_sysmon report 927
modifying abstract plans 710
monitoring

CPU usage 37
data cache performance 306
index usage 189
lock contention 237

network activity 17
performance 3, 900

monitoring environment 53
MRU replacement strategy 162

asynchronous prefetch and 620
disabling 422
showplan messages for 812
specifying 422

mru scan property 729
multicolumn index. See composite indexes
multidatabase transactions 941, 948
multiple matching index scans 458, 462
multiple network engines 33
multiple network listeners 22
multitasking 27
multithreading 23

N
names

column, in search arguments 392
index clause and 417
index prefetch and 419
index, in showplan messages 799

nested operator 729–731
nested-loop joins 482

specifying 731
nesting

showplan messages for 824
temporary tables and 635

network engines 33
network I/O 33

application statistics 935
network packets

global variables 17
sp_monitor system procedure 17, 38

networks 13
blocking checks 912
cursor activity of 648
delayed I/O 1002
hardware for 19
I/O management 999
i/o polling process count and 913
multiple listeners 22
packets 928

Index

1018

performance and 13–22
ports 22
reducing traffic on 18, 373, 1003
server based techniques 18
sp_sysmon report on 911
total I/O checks 912

nl_g_join operator 731–732
noholdlock keyword, select 251
nonblocking network checks, sp_sysmon report on 912
nonclustered indexes 196

asynchronous prefetch and 611
covered queries and sorting 455
create index requirements 589
definition of 207
delete operations 212
estimating size of 349–351
guidelines for 180
hash-based scans 550–551
insert operations 211
maintenance report 953
number allowed 177
point query cost 441
range query cost 444, 445
select operations 210
size of 208, 339, 349, 353
sorting and 456
structure 208

nonleaf rows 350
nonmatching index scans 216–217

nonequality operators and 393
normal forms 10
normalization 123

first normal form 124
joins and 124
second normal form 125
temporary tables and 629
third normal form 126

null columns
optimizing updates on 473
storage of rows 143
storage size 344
variable-length 181

null values
datatypes allowing 181
text and image columns 358

number (quantity of)

bytes per index key 177
checkpoints 992
clustered indexes 196
cursor rows 653
data pages 839
data rows 840
deleted rows 840
empty data pages 840
engines 531
forwarded rows 840
indexes per table 177
locks in the system 226
locks on a table 230
nonclustered indexes 196
OAM and allocation pages 840
OAM pages 351, 355
packet errors 18
pages 839
pages in an extent 840, 843
procedure (“proc”) buffers 300
processes 26
rows 840
rows (rowtotal), estimated 338
rows on a page 292
tables considered by optimizer 415

number of columns and sizes 149
number of locks configuration parameter

data-only-locked tables and 227
number of sort buffers configuration parameter

parallel sort messages and 601
parallel sorting and 583, 592–597

number of worker processes configuration parameter
523

numbers
row offset 208
showplan output 774

numeric expressions xxxix

O
OAM. Seeobject allocation map
object allocation map

costing 436
object Allocation Map (OAM) pages

number reported by optdiag 840

Index

1019

object allocation map (OAM) pages 146
overhead calculation and 348, 353

object allocation mapp (OAM) pages
LRU strategy in data cache 163

object size
viewing with optdiag 337

observing deadlocks 270
offset table

nonclustered index selects and 210
row IDs and 208
size of 143

online backups 369
online transaction processing (OLTP)

execution preference assignments 73
named data caches for 309
network packet size for 16
parallel queries and 543

open command
memory and 642

operands
list of 717

operating systems
monitoring server CPU usage 909
outstanding I/O limit 996

operators
nonequality, in search arguments 393
in search arguments 392

optdiag utility command
binary mode 858–860
object sizes and 337
simulate mode 862

optimization
See also parallel query optimization
cursors 642
in keyword and 457
OAM scans 549
order by queries 451
parallel query 541–579
subquery processing order 509

optimizer 381–410, 433–475, 477–510, 541–579
See also parallel query optimization
aggregates and 462, 572
cache strategies and 316
dbcc traceon(302) 873–897
dbcc traceon(310) 891
diagnosing problems of 384, 577

dropping indexes not used by 189
expression subqueries 505
I/O estimates 876
indexes and 173
join order 560–563, 891
nonunique entries and 175
or clauses and 457
overriding 411
parallel queries and 541–579
procedure parameters and 398
quantified predicate subqueries 500
query plan output 873–897
reformatting strategy 498, 808
sources of problems 384
subqueries and 499
temporary tables and 634
understanding 873
updates and 472
viewing with trace flag 302 873

or keyword
estimated cost 459
matching index scans and 805
optimization and 457
optimization of join clauses using 510
processing 458
scan counts and 768
subqueries containing 508

OR strategy 458
cursors and 652
showplan messages for 802, 806
statistics io output for 768

order
composite indexes and 183
data and index storage 196
index key values 199
joins 560–563
presorted data and index creation 363
recovery of databases 370
result sets and performance 168
tables in a join 413, 480
tables in showplan messages 775

order by clause
parallel optimization of 571

order by clause
indexes and 195
optimization of 451

Index

1020

parallel optimization of 581
showplan messages for 789
worktables for 790

outer join
permutations 482

outer joins 484
join order 482

output
showplan 773–832
sp_estspace 176
sp_spaceused 338

overflow pages 204
key values and 204

overhead
calculation (space allocation) 351, 355
clustered indexes and 168
CPU yields and 912
cursors 648
datatypes and 181, 191
deferred updates 468
network packets and 17, 1003
nonclustered indexes 182
object size calculations 342
parallel query 543–544
pool configuration 327
row and page 342
single process 25
sp_sysmon 900
space allocation calculation 348, 353
variable-length and null columns 344
variable-length columns 182

overheads 148

P
@@pack_received global variable 18
@@pack_sent global variable 18
packet size 16
@@packet_errors global variable 18
packets

default 16
number 17
size specification 17

packets, network 15
average size received 1002

average size sent 1003
received 1002
sent 1002
size, configuring 16, 928

page allocation to transaction log 951
page chain kinks

asynchronous prefetch and 615, 622
clustered indexes and 623
defined 615
heap tables and 623
nonclustered indexes and 623

page chains
overflow pages and 204
placement 76
text or image data 358
unpartitioning 94

page lock promotion HWM configuration parameter
230

page lock promotion LWM configuration parameter
231

page lock promotion PCT configuration parameter
231

page locks
sp_lock report on 259
table locks versus. 230

page requests, sp_sysmon report on 980
page splits 955

avoiding 955
data pages 201
disk write contention and 923
fillfactor effect on 272
index maintenance and 955
index pages and 203
max_rows_per_page setting and 292
nonclustered indexes, effect on 201
object size and 337
performance impact of 203
reducing 272
retries and 959

page utilization percent configuration parameter
object size estimation and 343

pages
global allocation map (GAM) 145
overflow 204

pages, control
updating statistics on 103

Index

1021

pages, data 141–169
bulk copy and allocations 370
calculating number of 346, 352
cluster ratio 841
fillfactor effect on 356
fillfactor for SMP systems 42
linking 155
number of 839
prefetch and 419
size 141
splitting 201

pages, index
aging in data cache 303
calculating number of 347
calculating number of non-leaf 354
fillfactor effect on 273, 356
fillfactor for SMP systems 42
leaf level 208
shrinks, sp_sysmon report on 961
storage on 196

pages, OAM (Object Allocation Map)
number of 351

pages, OAM (object allocation map) 146
aging in data cache 303
number of 348, 353, 355

parallel clustered index partition scan 546–548
cost of using 548
definition of 546
requirements for using 548
summary of 555

parallel hash-based table scan 549–550
cost of using 550
definition of 549
requirements for using 550
summary of 555

parallel keyword, select command 576
parallel nonclustered index hash-based scan 550–551

cost of using 551
summary of 555

parallel partition scan 545–546
cost of using 546
definition of 545
example of 566
requirements for using 546
summary of 555

parallel queries

worktables and 571
parallel query optimization 541–579

aggregate queries 572
definition of 542
degree of parallelism 556–565
examples of 565–576
exists clause 571
join order 560–563, ??–570
order by clause 571
overhead 542, 543–544
partitioning considerations 543, 544
requirements for 542
resource limits 579
select into queries 572
serial optimization compared to 542
single-table scans 566–567
speed as goal 542
subqueries 571
system tables and 543
troubleshooting 577
union operator 572

parallel query processing 512–540, 541–579
asynchronous prefetch and 620
configuring for 523
configuring worker processes 525
CPU usage and 531, 533, 536
disk devices and 532
execution phases 515
hardware guidelines 533
I/O and 532
joins and 520
merge types 516
object placement and 76
performance of 77
query types and 512
resources 531
worker process limits 523

parallel scan property 732–733
parallel sorting 581–606

clustered index requirements 589
commands affected by 581
conditions for performing 582
configuring worker processes 525
coordinating process and 586
degree of parallelism of 590, 601
distribution map 585, 602

Index

1022

dynamic range partitioning for 585
examples of 602–604
logging of 600
merge runs 586
merging results 586
nonclustered index requirements 589
number of sort buffers parameter and 583
observation of 600–604
overview of 583
producer process and 585
range sorting and 586
recovery and 600
resources required for 582, 586
sampling data for 585, 602
select into/bulk copy/pllsort option and 582
sort buffers and 593–594, 601
sort_resources option 601
sub-indexes and 586
target segment 588
tempdb and 599
tuning tools 600
with consumers clause and 590
worktables and 590, 591

parameters, procedure
optimization and 398
tuning with 875

parse and compile time 763
partial plans

hints operator and 721
specifying with create plan 659

partition clause, alter table command 93
partition-based scans 545–546, 546–548, 555

asynchronous prefetch and 621
partitioned tables 85

bcp (bulk copy utility) and 97, 373
changing the number of partitions 94
command summary 93
configuration parameters for 89
configuration parameters for indexing 95
create index and 95, 589, 600
creating new 104
data distribution in 98
devices and 101, 110, 115
distributing data across 95, 107
extent stealing and 101
information on 98

load balancing and 101
loading with bcp 97
maintaining 103, 118
moving with on segmentname 106
parallel optimization and 544, 556
read-mostly 92
read-only 91
segment distribution of 89
size of 98, 102
skew in data distribution 546
sorted data option and 105
space planning for 90
statistics 103
statistics updates 103
unpartitioning 94
updates and 92
updating statistics 103
worktables 554

partitioning tables 93
partitions

cache hit ratio and 535
guidelines for configuring 535
parallel optimization and 543
RAID devices and 533
ratio of sizes 98
size of 98, 102

performance 1
analysis 9
backups and 369
bcp (bulk copy utility) and 371
cache hit ratio 306
clustered indexes and 168, 238
costing queries for data-only-locked tables 436
data-only-locked tables and 238
designing 2
diagnosing slow queries 577
indexes and 173
lock contention and 923
locking and 221
monitoring 904
networks 13
number of indexes and 175
number of tables considered by optimizer 415
optdiag and altering statistics 857
order by and 451–452
problems 13

Index

1023

runtime adjustments and 574
speed and 901
techniques 14
tempdb and 625–636

performing benchmark tests 51
performing disk I/O 34
physical device name 78
plan dump option, set 689
plan groups

adding 702
copying 710
copying to a table 714
creating 702
dropping 703
dropping all plans in 713
exporting 714
information about 703
overview of use 659
plan association and 659
plan capture and 659
reports 703

plan load option, set 691
plan operator 733–735
plan replace option, set 691
plans

changing 710
comparing 709
copying 708, 710
deleting 713
dropping 708, 713
finding 706
modifying 710
searching for 706

point query 140
pointers

index 196
last page, for heap tables 157
page chain 155
text and image page 143

pool size
specifying 735

pools, data cache
configuring for operations on heap tables 161
large I/Os and 313
overhead 327
sp_sysmon report on size 985

pools, worker process 513
size 527

ports, multiple 22
positioning showplan messages 802
precedence

lock promotion thresholds 233
rule (execution hierarchy) 64

precedence rule, execution hierarchy 65
precision, datatype

size and 344
predefined execution class 54
prefetch

asynchronous 607–??
data pages 419
disabling 420
enabling 420
queries 418
sequential 161
sp_cachestrategy 422

prefetch keyword
I/O size and 418

prefetch scan property 735–736
prefix subset

defined 395
density values for 846
examples of 395
order by and 455
statistics for 846

primary key constraint
index created by 177

primary keys
normalization and 125
splitting tables and 134

priority 56
application 53, ??–64, ??–72
assigning 54
changes, sp_sysmon report on 932, 935
precedence rule 65
run queues 62
task 54

“proc headers” 300
procedure (“proc”) buffers 300
procedure cache

cache hit ratio 301
errors 301
management with sp_sysmon 988

Index

1024

query plans in 300
size report 300
sizing 301

procedure cache sizing configuration parameter 299
process model 31
processes (server tasks) 27

CPUs and 907
identifier (PID) 26
lightweight 25
number of 26
overhead 25
run queue 27

processing power 531
producer process 585, 601
profile, transaction 939
promotion, lock 230
prop operator 736–737
ptn_data_pgs system function 102

Q
quantified predicate subqueries

aggregates in 506
optimization of 500
showplan messages for 825

queries
execution settings 773
parallel 541–579
point 140
range 175
specifying I/O size 418
specifying index for 416
unindexed columns in 141

query analysis 433–475, 477–510
dbcc traceon(302) 873–897
set statistics io 763
showplan and 773–832
sp_cachestrategy 423
tools for 429–432

query optimization 384
OAM scans 436

query plans
optimizer and 381
procedure cache storage 300
runtime adjustment of 573–574

suboptimal 416
unused and procedure cache 300
updatable cursors and 652

query processing
large I/O for 315
parallel 512–540
steps in 382

queues
run 34
scheduling and 28
sleep 28

R
RAID devices

consumers and 590
create index and 590
partitioned tables and 90, 533

range
partition sorting 586

range cell density 396
query optimization and 883
statistics 848, 849

range queries 175
large I/O for 418

range selectivity 398
changing with optdiag 860
dbcc traceon(302) output 884
query optimization and 859

range-based scans
I/O and 544
worker processes and 544

read-only cursors 643
indexes and 643
locking and 648

reads
clustered indexes and 200
disk 998
disk mirroring and 82
image values 144
named data caches and 329
statistics for 769
text values 144

reclaiming space
housekeeper task 937

Index

1025

recompilation
avoiding runtime adjustments 576
cache binding and 328
testing optimization and 875

recovery
asynchronous prefetch and 610
configuring asynchronous prefetch for 621
housekeeper task and 35
index creation and 363
log placement and speed 81
parallel sorting and 600
sp_sysmon report on 990

recovery interval in minutes configuration parameter
303, 330

I/O and 369
re-creating

indexes 95, 363
referential integrity

references and unique index requirements 181
update operations and 465
updates using 467

reformatting 498
joins and 498
parallel optimization of 582
showplan messages for 808

reformatting strategy
prohibiting with i_scan 724
prohibiting with t_scan 743
specifying in abstract plans 739

relaxed LRU replacement policy
indexes 318
lookup tables 318
transaction logs 318

remote backups 368
reorg command

statistics and 869, 870
replacement policy. See cache replacement policy
replacement strategy. See LRU replacement strategy;

MRU replacement strategy
replication

network activity from 19
tuning levels and 4
update operations and 465

reports
cache strategy 423
plan groups 703

procedure cache size 300
sp_estspace 340

reserved pages, sp_spaceused report on 340
reservepagegap option 283–289

cluster ratios 283, 288
create index 286
create table 285
extent allocation and 283
forwarded rows and 283
sp_chgattribute 286
space usage and 283
storage required by 357

resource limits 576
showplan messages for 812
sp_sysmon report on violations 935

response time
CPU utilization and 910
definition of 1
other users affecting 20
parallel optimization for 542
sp_sysmon report on 906
table scans and 140

retries, page splits and 959
risks of denormalization 129
root level of indexes 197
rounding

object size calculation and 342
row ID (RID) 208, 955

update operations and 465
updates from clustered split 955
updates, index maintenance and 955

row lock promotion HWM configuration parameter
230

row lock promotion LWM configuration parameter
231

row lock promotion PCT configuration parameter
231

row locks
sp_lock report on 259
table locks versus 230

row offset number 208
rows per data page 153
rows, data

number of 840
size of 840

rows, index

Index

1026

size of 843
size of leaf 349, 353
size of non-leaf 350

rows, table
splitting 135

run queue 26, 27, 34, 926
runtime adjustment 565, 573–576

avoiding 576
defined 527
effects of 574
recognizing 575

S
sample interval, sp_sysmon 907
sampling for parallel sort 585, 602
SARGs. See search arguments
saturation

CPU 532
I/O 532

scan operator 737–738
scan properties

specifying 736
scan selectivity 887
scan session 229
scanning, in showplan messages 803
scans, number of (statistics io) 767
scans, table

auxiliary scan descriptors 793
avoiding 195
costs of 435
performance issues 140
showplan message for 800

scheduling, Server
engines 32
tasks 28

scope rule 64, 66
search arguments

dbcc traceon(302) list 880
equivalents in 386
examples of 393
indexable 392
indexes and 392
matching datatypes in 401
operators in 392

optimizing 875
parallel query optimization 546
statistics and 394
syntax 392
transitive closure for 387

search conditions
clustered indexes and 179

searches skipped, sp_sysmon report on 971
searching for abstract plans 706
second normal form 125

See also normalization
segments 78

changing table locking schemes 376
clustered indexes on 84
database object placement on 79, 84
free pages in 101
moving tables between 106
nonclustered indexes on 84
parallel sorting and 588
partition distribution over 89
performance of parallel sort 599
target 588, 601
tempdb 630

select * command
logging of 633

select command
optimizing 175
parallel clause 526
specifying index 416

select into command
parallel optimization of

 572
in parallel queries 572

select into command
heap tables and 157
large I/O for 315

select into/bulkcopy/pllsort database option
parallel sorting and 582

select operations
clustered indexes and 199
heaps 156
nonclustered indexes 210

selectivity
changing with optdiag 860
dbcc traceon(302) output 882
default values 884

Index

1027

semaphores 950
disk device contention 998
log contention 926
user log cache requests 950

sequential prefetch 161, 313
server

other tools 18
server config limit, in sp_sysmon report 996
servers

monitoring performance 900
scheduler 30
uniprocessor and SMP 42

set command
forceplan 413
jtc 424
noexec and statistics io interaction 431
parallel degree 525
plan dump 689
plan exists 694
plan load 691
plan replace 691
query plans 773–832
scan_parallel_degree 526
sort_merge 423
sort_resources 600
statistics io 431, 765
statistics simulate 762
statistics time 762
subquery cache statistics 508
transaction isolation level 247

set forceplan on
abstract plans and 721

set plan dump command 690
set plan exists check 694
set plan load command 690
set plan replace command 691
set theory operations

compared to row-oriented programming 638
shared keyword

cursors and 253, 643
locking and 253

shared locks
cursors and 253
holdlock keyword 250
intent deadlocks 970
page deadlocks 970

read-only cursors 643
sp_lock report on 259
table deadlocks 970

showplan messages
descending index scans 805
simulated statistics message 782

showplan option, set 773–832
access methods 793
caching strategies 793
clustered indexes and 798
compared to trace flag 302 873
I/O cost strategies 793
messages 774
query clauses 782
sorting messages 792
subquery messages 818
update modes and 779

simulated statistics
dbcc traceon(302) and 867
dropping 867
set noexec and 867
showplan message for 782

single CPU 26
single-process overhead 25
size

data pages 141
datatypes with precisions 344
formulas for tables or indexes 342–359
I/O 161, 313
I/O, reported by showplan 811
indexes 336
nonclustered and clustered indexes 208
object (sp_spaceused) 338
partitions 98
predicting tables and indexes 345–359
procedure cache 300, 301
sp_spaceused estimation 340
stored procedure 302
tables 336
tempdb database 628
transaction logs 951
triggers 302
views 302

skew in partitioned tables
defined 546
effect on query plans 546

Index

1028

information on 98
sleep queue 28
sleeping CPU 912
sleeping locks 257
slow queries 384
SMP (symmetric multiprocessing) systems

application design in 42
architecture 31
disk management in 42
log semaphore contention 926
named data caches for 310
temporary tables and 43

sort buffers
computing maximum allowed 595
configuring 593–594
guidelines 593
requirements for parallel sorting 583
set sort_resources and 601

sort operations (order by)
See also parallel sorting
covering indexes and 455
improving performance of 362
indexing to avoid 195
nonclustered indexes and 456
performance problems 626
showplan messages for 800
sorting plans 600
without indexes 449

sort order
ascending 451, 454
descending 451, 454
rebuilding indexes after changing 365

sort_merge option, set 423
sort_resources option, set 601–604
sorted data, reindexing 363, 366
sorted_data option

fillfactor and 277
reservepagegap and 289

sorted_data option, create index
partitioned tables and 105
sort suppression and 363

sources of optimization problems 384
sp_add_qpgroup system procedure 702
sp_addengine system procedure 59
sp_addexeclass system procedure 55
sp_bindexeclass system procedure 54

sp_cachestrategy system procedure 422
sp_chgattribute system procedure

concurrency_opt_threshold 427
exp_row_size 279
fillfactor 273–277
reservepagegap 286

sp_cmp_qplans system procedure 709
sp_copy_all_qplans system procedure 710
sp_copy_qplan system procedure 708
sp_drop_all_qplans system procedure 713
sp_drop_qpgroup system procedure 703
sp_drop_qplan system procedure 708
sp_dropglockpromote system procedure 234
sp_droprowlockpromote system procedure 234
sp_estspace system procedure

advantages of 341
disadvantages of 342
planning future growth with 340

sp_export_qpgroup system procedure 714
sp_find_qplan system procedure 706
sp_flushstats system procedure

statistics maintenance and 871
sp_help system procedure

displaying expected row size 280
sp_help_qpgroup system procedure 703
sp_help_qplan system procedure 707
sp_helpartition system procedure 98
sp_helpsegment system procedure

checking data distribution 101
sp_import_qpgroup system procedure 715
sp_lock system procedure 258
sp_logiosize system procedure 323
sp_monitor system procedure 38

network packets 17
sp_sysmon interaction 900

sp_object_stats system procedure 268–269
sp_set_qplan system procedure 710
sp_setpglockpromote system procedure 232
sp_setrowlockpromote system procedure 232
sp_spaceused system procedure 338

row total estimate reported 338
sp_sysmon system procedure 899–1003

parallel sorting and 605
sorting and 605
transaction management and 946

sp_who system procedure

Index

1029

blocking process 257
space 148, 149

clustered compared to nonclustered indexes 208
estimating table and index size 345–359
extents 144
for text or image storage 144
reclaiming 169
unused 144
worktable sort requirements 599

space allocation
clustered index creation 177
contiguous 147
deallocation of index pages 207
deletes and 159
extents 144
index page splits 203
monotonically increasing key values and 203
object allocation map (OAM) pages 348, 353
overhead calculation 348, 351, 353, 355
page splits and 201
predicting tables and indexes 345–359
procedure cache 300
sp_spaceused 340
tempdb 631
unused space within 144

space management properties 271–294
object size and 356
reserve page gap 283–289
space usage 377

sparse frequency counts 855
special OR strategy 458, 462

statistics io output for 768
speed (server)

cheap direct updates 466
deferred index deletes 471
deferred updates 467
direct updates 464
expensive direct updates 466
in-place updates 465
memory compared to disk 295
select into 633
slow queries 384
sort operations 362, 586
updates 464

spinlocks
contention 320, 981

data caches and 309, 981
splitting

data pages on inserts 201
horizontal 134
procedures for optimization 397, 398
tables 133
vertical 135

SQL standards
concurrency problems 226
cursors and 638

statistics
allocation pages 840
between selectivity 398
cache hits 976, 982
cluster ratios 843
column-level 752, 753, 754, 846–856
data page cluster ratio 841, 844
data page count 839
data row cluster ratio 844
data row size 840
deadlocks 967, 969
deleted rows 840
deleting table and column with delete statistics

759
displaying with optdiag 838–856
drop index and 752
empty data page count 840
equality selectivity 398
forwarded rows 840
in between selectivity 848
index 842–??
index add levels 960
index height 840, 843
index maintenance 953
index maintenance and deletes 954
index row size 843
large I/O 977
locks 964, 967
OAM pages 840
page shrinks 961
range cell density 848, 849
range selectivity 848
recovery management 990
row counts 840
spinlock 981
subquery cache usage 508

Index

1030

system tables and 835–837
total density 848, 849
transactions 942
truncate table and 752
update time stamp 848

statistics clause, create index command 752
statistics subquerycache option, set 508
steps

deferred updates 467
direct updates 464
key values in distribution table 395
problem analysis 9
query plans 774

storage management
collapsed tables effect on 132
delete operations and 159
I/O contention avoidance 79
page proximity 147
row storage 143
space deallocation and 206

store operator 738–740
materialized subqueries and 742

stored procedures
cursors within 646
hot spots and 74
optimization 398
performance and 76
procedure cache and 300
size estimation 302
sp_sysmon report on 989
splitting 397, 398
temporary tables and 636

stress tests, sp_sysmon and 901
striping tempdb 628

sort performance and 599
subprocesses 27

switching context 27
subq operator 740–742
subqueries

any, optimization of 500
attachment 509
exists, optimization of 500
expression, optimization of 505
flattened 742
flattening 500
identifying in plans 740

in, optimization of 500
materialization and 505
materialized 742
nesting and views 726
nesting examples 740
nesting of 729
optimization 499, 571
parallel optimization of 571
quantified predicate, optimization of 500
results caching 508, 571
showplan messages for 818–832

sybsecurity database
audit queue and 332
placement 81

symbols
in SQL statements xxxviii

Symmetric Multi Processing System. See SMP 32
symptoms of optimization problems 384
sysgams table 145
sysindexes table

data access and 147
text objects listed in 144

sysprocedures table
query plans in 300

sysstatistics table 837
systabstats table 836

query processing and 871
system log record, ULC flushes and (in sp_sysmon

report) 948
system tables

data access and 147
performance and 76

T
t_scan operator 743
table count option, set 415
table locks 972

page locks versus 230
row locks versus 230
sp_lock report on 259

table operator 743–745
table scans

asynchronous prefetch and 610
avoiding 195

Index

1031

cache flushing and 435
evaluating costs of 435
forcing 416
OAM scan cost 549
performance issues 140
showplan messages for 798
specifying 743

tables
collapsing 132
denormalizing by splitting 133
designing 123
duplicating 133
estimating size of 342
heap 155–170
locks held on 259
moving with on segmentname 106
normal in tempdb 627
normalization 123
partitioning 86, 93
secondary 190
size of 336
size with a clustered index 345, 351
unpartitioning 94

tabular data stream 15
tabular data stream (TDS) protocol 15

network packets and 928
packets received 1002
packets sent 1002

target segment 588, 601
task level tuning

algorithm 45
tasks

client 24
context switches 921
CPU resources and 531
execution 34
queued 28
scheduling 28
sleeping 926

TDS. See Tabular Data Stream
tempdb database

data caches 631
logging in 633
named caches and 309
performance and 625–636
placement 80, 630

segments 630
in SMP environment 43
space allocation 631
striping 628

temporary tables
denormalization and 629
indexing 635
nesting procedures and 635
normalization and 629
optimizing 634
performance considerations 76, 626
permanent 627
SMP systems 43

testing
caching and 770
data cache performance 306
“hot spots” 180
index forcing 416
nonclustered indexes 182
performance monitoring and 900
statistics io and 770

text datatype
chain of text pages 358
page size for storage 144
storage on separate device 85, 143
sysindexes table and 144

third normal form. See normalization
thresholds

bulk copy and 371
database dumps and 369

throughput 2
adding engines and 910
CPU utilization and 910
group commit sleeps and 926
log I/O size and 926
measuring for devices 90
monitoring 906
pool turnover and 984
TDS messages and 1003

time interval
deadlock checking 267
recovery 331
since sp_monitor last run 38
sp_sysmon 902

time slice 55
configuration parameter 30

Index

1032

time slice configuration parameter
CPU yields and 31

timeouts, lock
sp_sysmon report on 973

tools
packet monitoring with sp_monitor 17

total cache hits in sp_sysmon report 976
total cache misses in sp_sysmon report on 976
total cache searches in sp_sysmon report 976
total density 396

equality search arguments and 849
joins and 849
query optimization and 883
statistics 848, 849

total disk I/O checks in sp_sysmon report 913
total lock requests in sp_sysmon report 967
total network I/O checks in sp_sysmon report 912
total work compared to response time optimization 542
trace flag

302 873–897
310 891
317 891
3604 874

transaction isolation level option, set 247
transaction length 42
transaction logs

average writes 952
cache replacement policy for 318
contention 926
I/O batch size 923
last page writes 927
log I/O size and 322
named cache binding 309
page allocations 951
placing on separate segment 81
on same device 81
storage as heap 170
task switching and 926
update operation and 465
writes 951

transactions
close on endtran option 253
committed 940
deadlock resolution 263
default isolation level 247
log records 947, 949

logging and 633
management 946
monitoring 906
multidatabase 941, 948
performance and 906
profile (sp_sysmon report) 939
statistics 942

transitive closure
joins 388

transitive closure for SARGs 387
triggers

managing denormalized data with 136
procedure cache and 300
showplan messages for 810
size estimation 302
update mode and 472
update operations and 465

TRUE, return value of 501
truncate table command

column-level statistics and 752
not allowed on partitioned tables 89
statistics and 869, 870

tsequal system function
compared to holdlock 226

tuning
Adaptive Server layer 5
advanced techniques for 411–427, 873–897
application layer 4
asynchronous prefetch 617
database layer 4
definition of 2
devices layer 6
hardware layer 7
levels 3–8
monitoring performance 900
network layer 6
operating system layer 7
parallel query 534
parallel query processing 531–537
parallel sorts 591–600
range queries 416
recovery interval 331

turnover, pools (sp_sysmon report on) 984
turnover, total (sp_sysmon report on) 985
two-phase commit

network activity from 19

Index

1033

U
ULC. See user log cache (ULC)
union operator

parallel optimization of 572
union operator 745–746

cursors and 652
optimization of joins using 510
parallel optimization of 582
subquery cache numbering and 509

uniprocessor system 26
unique constraints

index created by 177
unique indexes 195

optimizing 181
update modes and 473

units, allocation. See allocation units
unknown values

total density and 849
unpartition clause, alter table 94
unpartitioning tables 94
unused space

allocations and 144
update all statistics 753
update all statistics command 751, 755
update command

image data and 358
text data and 358

update cursors 643
update index statistics 753, 755, 757
update locks

cursors and 643
sp_lock report on 259

update modes
cheap direct 466
deferred 467
deferred index 468
direct 467
expensive direct 466, 467
indexing and 473
in-place 465
joins and 467
optimizing for 472
triggers and 472

update operations 464
checking types 944
heap tables and 159

hot spots 224
index maintenance and 954
index updates and 182

update page deadlocks, sp_sysmon report on 970
update partition statistics 758
update partition statistics command 103
update statistics command

column-level 754
column-level statistics 754
large I/O for 315
managing statistics and 752
with consumers clause 758

updating
statistics 750

user connections
application design and 921
network packets and 16
sp_sysmon report on 921

user IDs
changing with sp_import_qpgroup 715

user log cache (ULC)
log records 947, 949
log size and 322
maximum size 949
semaphore requests 950

user log cache size configuration parameter 949
increasing 948

user-defined execution class 54
users

assigning execution priority 74
login information 33

utilization
cache 982
engines 909
kernel 908

V
values

unknown, optimizing 410
variable-length 151
variable-length columns

index overhead and 191
variables

optimization of queries using 883

Index

1034

optimizer and 398
vertical table splitting 135
view operator 746
views

collapsing tables and 133
correlation names 748
nesting of subqueries 726
size estimation 302
specifying location of tables in 724

W
wait-times 269
wash area 303

configuring 327
parallel sorting and 598

wash marker 162
where clause

creating indexes for 180
optimizing 875
table scans and 155

with consumers clause, create index 590
with statistics clause, create index command 752
work_t operator 747–748
worker processes 24, 513

clustered indexes and 589
configuring 525
consumer process 585
coordinating process 586
deadlock detection and 264
joins and 560
nonclustered indexes and 589
overhead of 543
parallel sort requirements 587
parallel sorting and 590
pool 513
pool size and 527
producer process 585
resource limits with 579
runtime adjustment of 565, 573–576
specifying 732
worktable sorts and 591

worktable 791
worktable scans

empty scan operators 748

worktables
distinct and 789
locking and 632
or clauses and 460
order by and 790
parallel queries and 554, 571
parallel sorting and 590, 593
parallel sorts on 571
partitioning of 554
reads and writes on 770
reformatting and 499
showplan messages for 783
space requirements 599
store operator and 738
tempdb and 628

write operations
contention 922
disk 998
disk mirroring and 82
free 35
housekeeper process and 36
image values 144
serial mode of disk mirroring 83
statistics for 769
text values 144
transaction log 951

Y
yields, CPU

cpu grace time configuration parameter 31
sp_sysmon report on 911
time slice configuration parameter 31
yield points 30

	Performance and Tuning Guide: Volume 3 - Tools for Monitoring and Analyzing Performance
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Index
	Related documents
	Other sources of information
	Sybase certifications on the Web
	For the latest information on product certifications
	For the latest information on EBFs and Updates
	To create a personalized view of the Sybase Web site (including support pages)
	Conventions
	Formatting SQL statements
	Font and syntax conventions
	Table 1: Font and syntax conventions in this manual
	Case
	Expressions
	Table 2: Types of expressions used in syntax statements
	Examples
	If you need help

	CHAPTER 33 Using Statistics to Improve Performance
	Importance of statistics
	Updating
	Adding statistics for unindexed columns

	update statistics commands
	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Disadvantages of too many steps
	Choosing a step number

	Scan types, sort requirements, and locking
	Table 33-1: Scans, sorts, and locking during update statistics
	Sorts for unindexed or non leading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing update statistics impact on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	CHAPTER 34 Using the set statistics Commands
	Command syntax
	Using simulated statistics
	Checking subquery cache performance
	Checking compile and execute time
	Converting ticks to milliseconds

	Reporting physical and logical I/O statistics
	Total actual I/O cost value
	Statistics for writes
	Statistics for reads
	Table 34-1: statistics io output for reads
	Sample output with and without an index
	statistics io without an index
	statistics io with an Index

	statistics io output for cursors
	Scan count
	Queries reporting a scan count of 1
	Queries reporting a scan count of more than 1
	Queries reporting scan count of 0

	Relationship between physical and logical reads
	Logical reads, physical reads, and 2K I/O
	Physical reads and large I/O
	Reads and writes on worktables
	Effects of caching on reads

	statistics io and merge joins

	CHAPTER 35 Using set showplan
	Using
	Basic showplan messages
	Query plan delimiter message
	Step message
	Query type message
	FROM TABLE message
	FROM TABLE and referential integrity

	TO TABLE message
	Update mode messages
	Direct update mode
	Deferred mode
	Deferred index and deferred varcol messages

	Optimized using messages
	Simulated statistics message
	Abstract plan messages

	showplan messages for query clauses
	Table 35-1: showplan messages for various clauses
	GROUP BY message
	Selecting into a worktable
	Grouped aggregate message
	Grouped aggregates and group by

	compute by message
	Ungrouped aggregate message
	Ungrouped aggregates
	compute messages

	messages for order by and distinct
	Worktable message for distinct
	Worktable message for order by
	order by queries and indexes

	Sorting messages
	Step involves sorting message
	GETSORTED message
	Serial or parallel sort message

	Messages describing access methods, caching, and I/O cost
	Auxiliary scan descriptors message
	Nested iteration message
	Merge join messages
	Worktable message

	Table scan message
	Clustered index message
	Index name message
	Scan direction messages
	Positioning messages
	Scanning messages
	Index covering message
	Keys message
	Matching index scans message
	Dynamic index message (OR strategy)
	Reformatting Message
	Trigger Log Scan Message
	I/O Size Messages
	Cache strategy messages
	Total estimated I/O cost message

	showplan messages for parallel queries
	Table 35-2: showplan messages for parallel queries
	Executed in parallel messages
	Coordinating process message
	Worker processes message
	Scan type message
	Merge messages
	Merge message for worktables
	Merge message for buffer merges
	Merge message for result buffers

	Data merge messages
	Runtime adjustment message

	showplan messages for subqueries
	Table 35-3: showplan messages for subqueries
	Output for flattened or materialized subqueries
	Flattened queries
	Subqueries executed as existence joins
	Subqueries using unique reformatting
	Subqueries using duplicate elimination

	Materialized queries

	Structure of subquery showplan output
	Subquery execution message
	Nesting level delimiter message
	Subquery plan start delimiter
	Subquery plan end delimiter
	Type of subquery
	Subquery predicates
	Internal subquery aggregates
	Table 35-4: Internal subquery aggregates
	Quantified predicate subqueries and the ANY aggregate
	Expression subqueries and the ONCE aggregate
	Subqueries with distinct and the ONCE-UNIQUE aggregate

	Existence join message
	Subqueries that perform existence tests

	CHAPTER 36 Statistics Tables and Displaying Statistics with optdiag
	System tables that store statistics
	systabstats table
	sysstatistics table

	Viewing statistics with the optdiag utility
	optdiag syntax
	optdiag header information
	Table 36-1: Table and column information

	Table statistics
	Sample output for table statistics
	Table 36-2: Table statistics

	Data page CR count
	Table-level derived statistics
	Table 36-3: Cluster ratio for a table

	Data page cluster ratio
	Space utilization
	Large I/O efficiency

	Index statistics
	Sample output for index statistics
	Table 36-4: Index statistics

	Index-level derived statistics
	Table 36-5: Cluster ratios for a nonclustered index

	Data page cluster ratio
	Index page cluster ratio
	Data row cluster ratio
	Space utilization for an index
	Large I/O efficiency for an index

	Column statistics
	Sample output for column statistics
	Table 36-6: Column statistics

	Range cell and total density values
	Range and in-between selectivity values

	Histogram displays
	Table 36-7: Commands that create histograms
	Sample output for histograms
	Table 36-8: Histogram summary statistics
	Table 36-9: Columns in optdiag histogram output

	Understanding histogram output
	Histograms for columns with highly duplicated values
	Histograms for dense frequency counts
	Histograms for sparse frequency counts
	Histograms for columns with sparse and dense values

	Choosing the number of steps for highly duplicated values

	Changing statistics with optdiag
	Using the optdiag binary mode
	When you must use binary mode

	Updating selectivities with optdiag input mode
	Editing histograms
	Adding frequency count cells to a histogram
	Editing a histogram with a dense frequency count
	Editing a histogram with a sparse frequency count

	Skipping the load-time verification for step numbering
	Rules checked during histogram loading
	Re-creating indexes without losing statistics updates

	Using simulated statistics
	optdiag syntax for simulated statistics
	Simulated statistics output
	Requirements for loading and using simulated statistics
	Using simulated statistics in the original database
	Using simulated statistics in another database

	Dropping simulated statistics
	Running queries with simulated statistics
	showplan messages for simulated statistics

	Character data containing quotation marks
	Effects of SQL commands on statistics
	Table 36-10: Effects of DDL on systabstats and sysstatistics
	How query processing affects systabstats

	CHAPTER 37 Tuning with dbcc traceon
	Tuning with dbcc traceon(302)
	dbcc traceon(310)
	Invoking the dbcc trace facility
	General tips for tuning with dbcc traceon(302)
	Checking for join columns and search arguments
	Determining how the optimizer estimates I/O costs
	Structure of dbcc traceon(302) output
	Additional blocks and messages

	Table information block
	Identifying the table
	Basic table data
	Cluster ratio
	Partition information

	Base cost block
	Concurrency optimization message

	Clause block
	Search clause identification
	When search clauses are not optimizable
	Values unknown at optimize time

	Join clause identification
	Sort avert messages

	Column block
	Selectivities when statistics exist and values are known
	When the optimizer uses default values
	Unknown values
	If no statistics are available

	Out-of-range messages
	“Disjoint qualifications” message
	Forcing messages
	Unique index messages
	Other messages in the column block

	Index selection block
	Scan and filter selectivity values
	How scan and filter selectivity can differ

	Other information in the index selection block

	Best access block
	dbcc traceon(310) and final query plan costs
	Flattened subquery join order message
	Worker process information
	Final plan information
	Table 37-1: dbcc traceon(310) output
	Table 37-2: pathtypes in dbcc traceon(310) output
	Sort-merge costs

	CHAPTER 38 Monitoring Performance with sp_sysmon
	Using
	When to run

	Invoking
	Fixed time intervals
	Using begin_sample and end_sample
	Specifying report sections for output
	Table 38-1: sp_sysmon report sections

	Specifying the application detail parameter
	Redirecting output to a file

	How to use the reports
	Reading output
	Rows
	Columns

	Interpreting the data
	Per second and per transaction data
	Percent of total and count data
	Per engine data
	Total or summary data

	Sample interval and time reporting
	Kernel utilization
	Sample output
	Engine busy utilization
	CPU yields by engine
	Network checks
	Non–blocking
	Blocking
	Total network I/O checks
	Average network I/Os per check

	Disk I/O checks
	Total disk I/O checks
	Checks returning I/O
	Average disk I/Os returned

	Worker process management
	Sample output
	Worker process requests
	Worker process usage
	Memory requests for worker processes
	Avg mem ever used by a WP

	Parallel query management
	Sample output
	Parallel query usage
	Merge lock requests
	Sort buffer waits

	Task management
	Sample output
	Connections opened
	Task context switches by engine
	Task context switches due to
	Voluntary yields
	Cache search misses
	System disk writes
	I/O pacing
	Logical lock contention
	Address lock contention
	Latch contention
	Reducing contention during page allocation

	Log semaphore contention
	PLC lock contention
	Group commit sleeps
	Last log page writes
	Modify conflicts
	I/O device contention
	Network packet received
	Network packet sent
	Other causes

	Application management
	Requesting detailed application information
	Sample output
	Application statistics summary (all applications)
	Priority changes
	Total priority changes

	Allotted slices exhausted
	Skipped tasks by engine
	Engine scope changes

	Per application or per application and login
	Application activity
	CPU busy
	I/O busy
	Idle
	Number of times scheduled

	Application priority changes
	Application I/Os completed
	Resource limits violated

	ESP management
	Sample output
	ESP requests
	Avg. time to execute an ESP

	Housekeeper task activity
	Sample output
	Buffer cache washes
	Garbage collections
	Statistics updates

	Monitor access to executing SQL
	Sample output
	Waits on execution plans
	Number of SQL text overflows
	Maximum SQL text requested

	Transaction profile
	Sample output
	Transaction summary
	Figure 38-1: How transactions are counted
	How to count multi database transactions

	Transaction detail
	Inserts
	APL heap tables
	APL clustered table
	Data only lock table
	Total rows inserted

	Updates and update detail sections
	Updates
	Total rows updated

	Data-only-locked updates

	Deletes
	Total rows deleted

	Transaction management
	Sample output
	ULC flushes to transaction log
	By full ULC
	By end transaction
	By change of database
	By system log record and by other

	Total ULC flushes
	ULC log records
	Maximum ULC size
	ULC semaphore requests
	Log semaphore requests
	Log semaphore contention and user log caches

	Transaction log writes
	Transaction log allocations
	Avg # writes per log page

	Index management
	Sample output
	Nonclustered maintenance
	Inserts and updates requiring maintenance to indexes
	Deletes requiring maintenance
	Row ID updates from clustered split
	Data-Only-Locked updates and deletes requiring maintenance

	Page splits
	Reducing page splits for ascending key inserts
	Default data page splitting
	Figure 38-2: Clustered table before inserts
	Figure 38-3: Insert causes a page split
	Figure 38-4: Another insert causes another page split
	Figure 38-5: Page splitting continues

	Effects of ascending inserts
	Figure 38-6: First insert with ascending inserts mode
	Figure 38-7: Additional ascending insert causes a page allocation
	Figure 38-8: Additional inserts fill the new page

	Setting ascending inserts mode for a table
	Retries and deadlocks
	Add index level

	Page shrinks
	Index scans

	Metadata cache management
	Sample output
	Open object, index, and database usage
	Table 38-2: Action to take based on metadata cache usage statistics

	Object and index spinlock contention
	Hash spinlock contention

	Lock management
	Sample output
	Lock summary
	Lock detail
	Address locks
	Last page locks on heaps

	Deadlocks by lock type
	Deadlock detection
	Deadlock searches
	Searches skipped
	Average deadlocks per search

	Lock promotions
	Lock time-out information

	Data cache management
	Sample output
	Cache statistics summary (all caches)
	Cache search summary
	Cache turnover
	Cache strategy summary
	Large I/O usage
	Large I/O effectiveness
	Asynchronous prefetch activity report
	APFs issued
	APFs denied due to
	APF buffers found in cache

	Other asynchronous prefetch statistics
	Dirty read behavior
	Page requests
	Dirty read re-starts

	Cache management by cache
	Cache spinlock contention
	Utilization
	Cache search, hit, and miss information
	Cache hits
	Found in wash
	Cache misses
	Total cache searches

	Pool turnover
	LRU buffer grab
	Grabbed dirty
	Total cache turnover

	Buffer wash behavior
	Cache strategy
	Large I/O usage
	Large I/Os performed
	Large I/Os denied
	Total large I/O requests

	Large I/O detail
	Dirty read behavior

	Procedure cache management
	Sample output
	Procedure requests
	Procedure reads from disk
	Procedure writes to disk
	Procedure removals

	Memory management
	Sample output
	Pages allocated
	Pages released

	Recovery management
	Sample output
	Checkpoints
	Number of normal checkpoints
	Number of free checkpoints
	Total checkpoints

	Average time per normal checkpoint
	Average time per free checkpoint
	Increasing the housekeeper batch limit

	Disk I/O management
	Sample output
	Maximum outstanding I/Os
	I/Os delayed by
	Disk I/O structures
	Server configuration limit
	Engine configuration limit
	Operating system limit

	Requested and completed disk I/Os
	Total requested disk I/Os
	Completed disk I/Os

	Device activity detail
	Reads and writes
	Total I/Os
	Device semaphore granted and waited

	Network I/O management
	Sample output
	Total network I/Os requests
	Network I/Os delayed
	Total TDS packets received
	Total bytes received
	Average bytes received per packet
	Total TDS packets sent
	Total bytes sent
	Average bytes sent per packet
	Reducing packet overhead

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

